Document management in Cloud PLM systems

Optimized processes, security, and global collaboration in the product lifecycle

How can companies efficiently manage their data and documents? How can they provide information across departments, locations, and organizations?

Even in individual projects, the number of documents quickly grows into the hundreds or thousands. Managing this data on network drives or email systems leads to bottlenecks in the face of the complexity of product development. Companies need a document logistics system that creates clarity and fosters teamwork.

Software for Product Lifecycle Management (PLM) is ideal for this task. Cloud-based systems, in particular, make document management more efficient by integrating all workflows and information throughout the entire product lifecycle. In this blog post, we explore how Cloud PLM systems simplify document management.

What are the benefits of cloud-based document storage?

Managing documents via the cloud offers two significant advantages:

Firstly, it promotes global real-time collaboration. Teams around the world can access legally binding documents and work on them together, significantly reducing development times.

Secondly, companies are not solely responsible for the security of their systems. Cloud providers must undergo rigorous certifications and audits, meeting the highest security standards. Sensitive information is optimally protected through data encryption, access controls, and regular security updates. This also simplifies compliance with regulations such as ISO and GDPR for customers.

What are the advantages of document management in PLM systems?

1. Centralized data storage:
The document management feature allows for company-wide organization of documents, promoting teamwork and knowledge sharing. Product-relevant documents, such as CAD files, are managed in a central location, avoiding data redundancies and ensuring all departments have access to up-to-date information.

2. Version control and change tracking:
PLM systems enable document versioning, ensuring teams always work with the latest data, as every change is logged.

3. Workflow and approval processes:
Integrated workflows automate approval and release processes, speeding up decision-making and ensuring structured processes without manual intervention.

4. Access controls:
Access rights can be clearly defined and managed within a PLM system, ensuring only authorized individuals can access sensitive documents.

5. Compliance adherence:
PLM systems provide audit-proof storage to meet regulatory requirements and industry standards (e.g., ISO).

6. Integrated data and processes:
Document management is often closely linked to areas such as project management, quality control, or product development. PLM systems integrate all product-related processes for comprehensive management.

7. Cost savings and increased efficiency:
With document management functions, employees use their working time more effectively, reducing search times and avoiding errors caused by outdated information. Improved collaboration across teams lowers costs in the long term, while automated processes enable faster turnaround times.

What makes document management with CIM Database Cloud stand out?

The intelligent document logistics of CIM Database Cloud enables organizations to maintain clarity and enhance collaboration even in complex processes. A powerful full-text search speeds up document retrieval and simplifies access to vital information.

With seamless integration with Microsoft Office for the web™, employees can use familiar applications to create, edit, and share documents without separate storage. Files are managed in the Cloud PLM document storage, allowing multiple people to work on the same document simultaneously—without requiring local MS Office installations.

Conclusion

Cloud PLM systems offer a powerful, secure solution for document management. Features like version control, workflow automation, and robust security measures help manage documents efficiently. Companies minimize risks and ensure compliance while the cloud-based structure offers maximum flexibility—teams can collaborate anytime, anywhere.

Learn more about how CONTACT CIM Database Cloud can optimize your document management.

Design decisions in minutes – how AI supports product development

Artificial intelligence (AI) is a hot topic and increasingly important in product development. But how can this technology be effectively integrated into development projects? Together with our client Audi, we put it to the test and examined the potential and challenges of a machine learning (ML) application – a subset of AI – in a real project. For this purpose, we chose a crash management system (CMS). It is both simple enough to achieve a meaningful result and complicated enough to adequately test the general applicability of the ML method.

Expertise as the Key

ML can only be effectively utilized to the extent the underlying data foundation allows. Therefore, the expertise of the professionals involved plays a critical role. For example, design engineers enter their knowledge of manufacturing and spatial constraints, usable materials, and dependencies into the CAD model. Calculating engineers share their expertise on the simulation process, while data scientists assist with sampling and evaluation.

The creation of thousands of design and corresponding simulation models, as required for the use of Machine Learning (ML), presents a tremendous challenge without automation. The FCM CAT.CAE-Bridge, a specially developed plug-in for CATIA, enables seamless automation across all process steps. Additionally, it embeds all simulation-relevant information (material, properties, solver, and more) directly into the CAD model. The fully automatic translation into a simulation file is done via tools such as ANSA or Hypermesh.

Automated process: Sampling, DoE, model creation, simulation, evaluation with subsequent training of the ML models. (© CONTACT Software]

Precise Linking of Parameters and Results

Our approach ensures that the relationship between the CAD model and the simulation model is fully preserved. The automated calculation and evaluation of the models based on specific results create an excellent data foundation for the ML process. The vectors of input parameters with corresponding result values form the basis for the ML approach—clear and comprehensive.

Input parameters (blue) identified based on constrained result vectors (red) that meet the requirements. (© CONTACT Software)

With the trained models and their known accuracy, parameter variations can be quickly tested, and the impact on behavior can be derived—literally within minutes. Once the optimal parameters are identified, they are automatically transferred to the CAD model and the design process can continue.

Conclusion

Our project demonstrated that ML is a valid method for design engineering. The combination of parametric CAD models, simulation, and machine learning provides an efficient approach to making design decisions quickly and accurately. The prerequisite for this is a robust database and the collaboration of the relevant experts on the model. The successful results from the Audi project demonstrate the potential of our data-based approach for product development.

Asset Administration Shell in practice

What is an Asset Administration Shell?

Industry 4.0 promises more efficient and sustainable manufacturing processes through digitalization. The foundation for this is a seamless, automatic exchange of information between systems and products. This is where the Asset Administration Shell (AAS) comes into play.

An Asset Administration Shell is a vendor-independent standard for describing digital twins. Basically, it is the digital representation of an asset; either a physical product or a virtual object (e.g., documents or software).

The AAS defines the appearance of the asset in the digital world. It describes which information of a device is relevant for communication and how this information is presented. This means the AAS can provide all important data about the asset in a standardized and automated way.

Let us take a look at a practical application to understand the benefits of an AAS:

Use case: AAS as enabler for new services

As part of the ESCOM research project, CONTACT Software collaborates with GMN Paul Müller Industrie GmbH & Co. KG to implement AAS-based component services. The family-run company manufactures motor spindles which are installed by its customers as components in metalworking machine tools and then resold.

Before the project began, GMN had already developed a new sensor technology. It enables deep insights into the behavior of a spindle and provides information on overall operation of the spindle system. The company wants to use this data to offer new, product-related services:

  • Certified commissioning: Before GMN ships its spindles, the components are put through a defined test cycle on the company’s in-house test bench. GMN uses the data from this reference cycle to ensure that motor spindles are installed and commissioned correctly at the customer’s facility.
  • Predictive services: Using the IDEA-4S sensor microelectronics, customers shall be able to continuously record and analyze operating data that provide insights into the availability and operation of the spindles. If necessary, the data can be shared with GMN, for example, for problem analysis. This saves valuable time until the machine is back up and running. In the future, GMN will be able to offer smart predictive services like predictive maintenance.

About GMN Paul Müller Industrie GmbH

GMN Paul Müller Industrie GmbH & Co. KG is a family-owned mechanical engineering company based in Nuremberg, Germany. It produces high-precision ball bearings, machine spindles, freewheel clutches, non-contact seals, and electric drives that are used in various industries. The company manufactures most of these components individually for its customers on site and sells its products via a global sales network.

How do we realize the new services?

To provide such services, companies must be able to access and analyze the sensor data of their machines. Furthermore, machines (or their components) must be enabled to communicate independently with other assets and systems on the shopfloor.

For both tasks, GMN uses CONTACT Elements for IoT. The modular software not only helps the company to record, document and evaluate the reference and usage data of their spindles. It also includes functions that enable users to create, fill and manage the AAS for an asset.

Background

During the implementation of services based on spindle operating data, GMN benefits from the cooperation with a customer. This company installs the spindles in processing machines that GMN uses to manufacture its own products. As a result, GMN can gather the operating data in-house and use it to improve the next generation of spindles.

What role does the AAS play?

For the components to exchange information in a standardized form, an AAS must be created for the spindle at item and serial number level. This is also done using CONTACT Elements for IoT. The new services are mapped in a so-called AAS metamodel. It serves as a “link” to the service offers.

AAS and submodels

The AAS of an Industry 4.0 component consists of one or more submodels that each contain a structured set of characteristics. These submodels are defined by the Industrial Digital Twin Association (IDTA), an initiative in which 113 organizations from research, industry and software (including CONTACT Software) collaborate to define AAS standards. A list of all currently published submodels is available at https://industrialdigitaltwin.org/en/content-hub/submodels.

In CONTACT Elements for IoT, GMN can populate the AAS submodels with little effort. The platform includes a widget developed as a prototype during the research project. It provides an overview of which submodels currently exist for the asset and which are available but not yet created. Through the frontend, users can jump directly to the REST node server and upload or download submodels (in AAS/JSON format).

During the implementation of data-driven service offerings, GMN focuses on the submodels

  • Time Series Data (e.g., semantic information about time series data)
  • Digital Nameplate (e. g., information about the product, the manufacturer’s name, as well as product name and family),
  • Contact Information (standardized metadata of an asset) and
  • Carbon Footprint (information about the carbon footprint of an asset)

Filling the submodels is simple. This is demonstrated by the module Time Series Data. During the reference run of a motor spindle on the in-house test bench, the time series data is recorded by CONTACT Elements for IoT. The platform automatically transfers this data to the AAS submodel of the motor spindle being tested. At the same time, the platform creates a document for the reference run. This allows GMN to track its validity at any time and make it available to external stakeholders.

New services on the horizon

Using Asset Administration Shells allows GMN to realize its service ideas. This currently concerns the commissioning service and automated quality assurance services.

By analyzing the spindle data, the company can identify outliers in the operating data and make suitable recommendations for action. For example, different vibration velocities indicate an incorrect installation of the spindle in the machine or that time-varying processes are occurring. The analysis can also be used to provide insights about anomalies in operating behavior.

Dashboards in CONTACT Elements for IoT increase transparency. They provide GMN with all relevant information about the spindles on the test bench, from 3D models to status data. This overview is extremely valuable, particularly for quality management.

An AAS in our software Elements for IoT.

Summarized

Asset Administration Shells are vendor-independent standards for describing digital twins. They are among the most important levers for implementing new Industry 4.0 business models, as they enable communication between assets, systems, and organizations. The example of GMN demonstrates the practical benefits of the AAS. The company uses it to design new, product-related services based on information from the AAS of its products. GMN can successively improve these services by continuously analyzing operating data in CONTACT Elements for IoT.