UX in industrial settings: Intuitive design for enhanced efficiency

The city of Würzburg, situated charmingly on the River Main, is renowned not only for its historic old town and first-class wines but also for hosting the “Future of Industrial Usability“. The event gathered experts from all over Germany from October 23 to 24 to discuss the latest developments in user experience (UX) within the industrial environment. My colleague Vivien and I were also present and want to share some insights.

User-friendliness as a success factor

A central topic of the conference was the user experience of products in industrial applications. And for good reason: in an era in which technology and digital solutions are shaping everyday working life, designing products and applications that focus on the needs and expectations of users becomes increasingly crucial. Outstanding UX can not only enhance customer satisfaction but also boost employee productivity and efficiency.

The presentations and discussions emphasized the importance of a user-centric approach to product development. From the simplicity of user interfaces to the seamless integration of functions, companies must comprehend their users’ needs to create products and applications that can perform effectively in today’s complex working environment.

Focus on user needs: personas in the enterprise software context

Developing enterprise software is particularly challenging due to its complexity and diverse user groups. As described in our article “Personas for business software – a gimmick or sustainable added value?“, utilizing personas offers an effective approach to tackle this challenge. Personas are fictional characters representing typical users of a product or service. Working with them is an integral part of CONTACT’s software development process and plays a key role in getting a better understanding of users’ tasks and needs in their professional lives. With this understanding, companies can develop more user-centered products and software solutions. In Würzburg, we presented how to create personas, market them within the company, and utilize them across departments.

Card set as a playful tool to visualize personas within the company (©Vogel Communications Group)

Integrating AI into interaction concepts: The path to the future

Another intensely debated topic was the integration of Artificial Intelligence (AI) into interaction concepts. AI is increasingly being used in industry as a means of improving processes and supporting decision-making. It holds the potential to fundamentally change the way we interact with machines and technology. Attendees were presented with impressive examples and best practices illustrating how AI can increase efficiency and performance in the industry. For instance, a concept showed how AI integration into a Human Machine Interface (HMI) assists machine users in adjusting facilities to be more energy efficient.

Future of Industrial Usability: a resounding success

Overall, the “Future of Industrial Usability” was an inspiring event. Alongside current trends, it showed that user-centered product development in the industry is not merely a passing trend but has taken a pivotal role in the future of product development and corporate success. Companies investing in usability enhancements will distinguish themselves in an increasingly competitive market and better meet their customers’ needs.

We look forward to further exciting developments and innovations in this field and thank the organizers of the conference in Würzburg for this excellent event. See you next time.

Asset Administration Shell as a catalyst of Industry 4.0

“Country of poets and thinkers” or ” Country of ideas”: Germany is proud of its writers, scientists, researchers, and engineers. And of its meticulous bureaucracy, which aims for absolute precision in statements or indications. Combined, this often results in awkward word creation when naming technical terms. A current example of this is the “Verwaltungsschale” (literally: administration shell), whose innovative potential and central relevance for Industry 4.0 are not immediately apparent.

What exactly is a “Verwaltungsschale”?

The “Verwaltungsschale” is not a dusty administrative authority, but the very German translation of the English term “Asset Administration Shell” (AAS). The AAS is a standardized complete digital description of an asset. An asset is basically anything that can be connected as part of an Industrie 4.0 solution (for example, plants, machines, products as well as their individual components). It contains all information and enables the exchange and interaction between different assets, systems, and organizations in a networked industry. Therefore, it is pretty much the opposite of a sluggish authority and currently the buzzword in digital transformation.

As with many new topics, definitions of AAS vary and are quite broad. From very specific like the Asset Administration Shell as an implementation of the digital twin for Industry 4.0 to the loose description of AAS as a data plug or integration plug for digital ecosystems.

I prefer the representation of the AAS as a metamodel for self-describing an asset. With this metamodel, further models can be generated to provide collected information. Through the use of software, these models are then “brought to life” and are made available to others via interfaces.

Concept and usage of the Asset Administration Shell

As a digital representation of an asset, the AAS provides information or functions related to a specific context through its submodels. Examples include digital nameplates, technical documents, the component or asset structure, simulation models, time series data, or sustainability-relevant information such as the carbon footprint. The information is generated along the various phases of the lifecycle, and it depends on the specific value network which asset information is of importance. Thus, submodels are initially created in certain lifecycle phases, specified and elaborated in subsequent phases, and enriched or updated with information in the further process. Thereby, the AAS refers to either a very generic (type) or a very concrete (instance) representation of an asset.

As assets change over time (as-defined, as-designed, as-ordered, as-built, as-maintained), so does the Asset Administration Shell. Thus, multiple AASs can exist for the same asset over the lifecycle. In order to utilize the information in the AAS within its value network, it needs to be accessible. Access is usually given via the Internet or via the cloud (repository-deployed AAS). In intelligent systems, the management shell can also be part of the asset itself (asset-deployed AAS).

Information can be exchanged in various ways. Either via files, so-called AASX files (AAS type 1), via a server-client interaction such as RestAPI (AAS type 2) or via peer-to-peer interaction (AAS type 3), in which the AASs communicate independently using the so-called I4.0 language and perform tasks cooperatively.

While type 1 and 2 take a passive role in the value network and are more likely to be used with repository-held AAS, type 3 describes an active participation in the value network and is more likely to be used with asset-held AAS running smart products.

Common standards connect!

No matter what type of Asset Administration Shell you choose: Important is that the recipient and the provider speak the same language. To achieve this, the exchange of concrete information must be standardized. Considering the amount of different industries, scenarios, assets, and functions, this is an immense number of submodels that need to be standardized. Organizations and associations such as the Industrial Digital Twin Association (IDTA), formed by research institutes, industrial companies, and software providers, are tackling this mammoth task. The rapidly growing number of members as well as the lively exchange at trade fairs and conferences among each other illustrate the potential for the industry. It is important not to leave SMEs behind, but to involve them in the standardization work in the best possible way.

Conclusion

The Asset Administration Shell is at the core of successful Industrie 4.0 scenarios. It enables manufacturer-independent interoperability and simplifies the integration of all types of assets into a collaborative value network. It increases efficiency within production processes by providing complete transparency of the real-time status of each asset. And it also offers a comprehensive security concept to protect the data. Within a very short time, the AAS has thus transformed from a theoretical construct to a real application in practice. Together with partners from research and industry, we are working within the ESCOM and Flex4Res research projects to make it usable on an industrial scale.



Anyone out there not yet in the cloud?

Yes, this is a serious question: Is there anyone who does not yet use cloud services, whether from their computer at home, at work or directly from their cell phone? We have all become so accustomed to using cloud servers like WhatsApp, Facebook or Dropbox. And these services work, are secure and are always available. Who would want to set up their own server at home for data communication or file exchange? Even at work, more and more companies are renting data exchange (Dropbox Enterprise) and communication services (Slack, MS Teams). In short: The use of cloud services at home and at work is becoming more and more standard.

So why not use the same kind of data management, file sharing and collaboration services for product-related data such as 3D CAD models, bills of materials and design specifications in the cloud?

Why not PLM from the cloud?

In the past, there was some skepticism about this in terms of network bandwidth, performance and security. But cloud solution providers, especially the big cloud hyperscalers, have done their homework, providing sufficient network capacity and even running their own physical cables across oceans. Take a minute and do the speed test at Amazon’s AWS Global Accelerators (https://speedtest.globalaccelerator.aws/#/).

Security concerns can also no longer be a valid argument for not running business-critical applications like a PLM system in the cloud. Companies like AWS, Azure and Google offer everything you need for highly secure, encrypted communications. Add your own virtual private network, single sign-on directory access, and multifactor authentication with timeout, and you’re as secure or more secure than you could ever be with your own infrastructure.

Cloud PLM from CONTACT Software

So it is a logical step that CONTACT Software also offers its solutions in the cloud. The idea: to reach a larger customer base faster (time to value). Since then, numerous potential and existing customers have actively approached us to run our products CIM Database PLM, the project management solution Project Office or the IoT platform CONTACT Elements for IoT in the cloud.

The CONTACT Cloud Solutions offer customers, on the one hand, a standard SaaS solution (Software as a Service – see NIST) with all PLM, project management and IoT functions that you can also install on-premise. In addition, there are predefined ERP interfaces in our technology platform as well as CAD integrations based on the new Workspaces Desktop for Web. For customers who want to customize the application or even implement their own solutions on top of the CONTACT Elements framework, CONTACT offers an enterprise edition of its platform in the cloud. This contains the entire CI/CD DevOps infrastructure to program locally, merge customizations, verify and deploy to test and production instances in the cloud.

So what is there to wait for? Get to know the possibilities of the CONTACT Cloud now.