Digital authenticity: how to spot AI-generated content

In today’s digital age, we often question whether we can trust images, videos, or texts. Tracing the source of information is becoming more and more difficult. Generative AI accelerates the creation of content at an incredible pace. Images and audio files that once required a skilled artist can now be generated by AI models in a matter of seconds. Models like OpenAI’s Sora can even produce high-quality videos!

This technology offers both opportunities and risks. On the one hand, it speeds up creative processes, but on the other hand, it can be misused for malicious purposes, such as phishing attacks or creating deceptively real deepfake videos. So how can we ensure that the content shared online is genuine?

Digital watermarks: invisible protection for content

Digital watermarks are one solution that helps verify the origin of images, videos, or audio files. These patterns are invisible to the human eye but can be detected by algorithms even after minor changes, like compressing or cropping an image, and are difficult to remove. They are primarily used to protect copyright.

However, applying watermarks to text is way more difficult because text has less redundancy than pixels in images. A related method is to insert small but visible errors into the original content. Google Maps, for instance, uses this method with fictional streets – if these streets appear in a copy, it signals copyright infringement.

Digital signatures: security through cryptography

Digital signatures are based on asymmetric cryptography. This means that the content is signed with a private key that only the creator possesses. Others can verify the authenticity of the content using a public key. Even the smallest alteration to the content invalidates the signature, making it nearly impossible to forge. Digital signatures already ensure transparency in online communication, for example through the HTTPS protocol for secure browsing.

In a world where all digital content would be protected by signatures, the origin and authenticity of any piece of media could be easily verified. For example, you could confirm who took a photo, when, and where. An initiative pushing this forward is the Coalition for Content Provenance and Authenticity (C2PA), which is developing technical standards to apply digital signatures to media and document its origin. Unlike watermarks, signatures are not permanently embedded into the content itself and can be removed without altering the material. In an ideal scenario, everyone would use digital signatures – then, missing signatures would raise doubts about the trustworthiness of the content.

GenAI detectors: AI vs. AI

GenAI detectors provide another way to recognize generated content. AI models are algorithms that leave behind certain patterns, such as specific wording or sentence structures. Other AI models can detect these. Tools like GPTZero can already identify with high accuracy whether a text originates from a generative AI model like ChatGPT or Gemini. While these detectors are not perfect yet, they provide an initial indication.

What does this mean for users?

Of all the options, digital signatures offer the strongest protection because they work across all types of content and are based on cryptographic methods. It will be interesting to see if projects like C2PA can establish trusted standards. Still, different measures may be needed depending on the purpose of ensuring the trustworthiness of digital content.
In addition to technological solutions, critical thinking remains one of the best tools for navigating the information age. The amount of available information is constantly growing; therefore, it is important to critically question, verify, and be aware of the capabilities of generative AI models.

For a more comprehensive article, check out the CONTACT Research Blog.

UX in industrial settings: Intuitive design for enhanced efficiency

The city of Würzburg, situated charmingly on the River Main, is renowned not only for its historic old town and first-class wines but also for hosting the “Future of Industrial Usability“. The event gathered experts from all over Germany from October 23 to 24 to discuss the latest developments in user experience (UX) within the industrial environment. My colleague Vivien and I were also present and want to share some insights.

User-friendliness as a success factor

A central topic of the conference was the user experience of products in industrial applications. And for good reason: in an era in which technology and digital solutions are shaping everyday working life, designing products and applications that focus on the needs and expectations of users becomes increasingly crucial. Outstanding UX can not only enhance customer satisfaction but also boost employee productivity and efficiency.

The presentations and discussions emphasized the importance of a user-centric approach to product development. From the simplicity of user interfaces to the seamless integration of functions, companies must comprehend their users’ needs to create products and applications that can perform effectively in today’s complex working environment.

Focus on user needs: personas in the enterprise software context

Developing enterprise software is particularly challenging due to its complexity and diverse user groups. As described in our article “Personas for business software – a gimmick or sustainable added value?“, utilizing personas offers an effective approach to tackle this challenge. Personas are fictional characters representing typical users of a product or service. Working with them is an integral part of CONTACT’s software development process and plays a key role in getting a better understanding of users’ tasks and needs in their professional lives. With this understanding, companies can develop more user-centered products and software solutions. In Würzburg, we presented how to create personas, market them within the company, and utilize them across departments.

Card set as a playful tool to visualize personas within the company (©Vogel Communications Group)

Integrating AI into interaction concepts: The path to the future

Another intensely debated topic was the integration of Artificial Intelligence (AI) into interaction concepts. AI is increasingly being used in industry as a means of improving processes and supporting decision-making. It holds the potential to fundamentally change the way we interact with machines and technology. Attendees were presented with impressive examples and best practices illustrating how AI can increase efficiency and performance in the industry. For instance, a concept showed how AI integration into a Human Machine Interface (HMI) assists machine users in adjusting facilities to be more energy efficient.

Future of Industrial Usability: a resounding success

Overall, the “Future of Industrial Usability” was an inspiring event. Alongside current trends, it showed that user-centered product development in the industry is not merely a passing trend but has taken a pivotal role in the future of product development and corporate success. Companies investing in usability enhancements will distinguish themselves in an increasingly competitive market and better meet their customers’ needs.

We look forward to further exciting developments and innovations in this field and thank the organizers of the conference in Würzburg for this excellent event. See you next time.

Asset Administration Shell as a catalyst of Industry 4.0

“Country of poets and thinkers” or ” Country of ideas”: Germany is proud of its writers, scientists, researchers, and engineers. And of its meticulous bureaucracy, which aims for absolute precision in statements or indications. Combined, this often results in awkward word creation when naming technical terms. A current example of this is the “Verwaltungsschale” (literally: administration shell), whose innovative potential and central relevance for Industry 4.0 are not immediately apparent.

What is an Asset Administration Shell?

“Verwaltungsschale” is not a dusty administrative authority, but the very German translation of the English term “Asset Administration Shell” (AAS). The AAS is a standardized complete digital description of an asset. An asset is basically anything that can be connected as part of an Industrie 4.0 solution (for example, plants, machines, products as well as their individual components). It contains all information and enables the exchange and interaction between different assets, systems, and organizations in a networked industry. Therefore, it is pretty much the opposite of a sluggish authority and currently the buzzword in digital transformation.

As with many new topics, definitions of AAS vary and are quite broad. From very specific like the Asset Administration Shell as an implementation of the digital twin for Industry 4.0 to the loose description of AAS as a data plug or integration plug for digital ecosystems.

I prefer the representation of the AAS as a metamodel for self-describing an asset. With this metamodel, further models can be generated to provide collected information. Through the use of software, these models are then “brought to life” and are made available to others via interfaces.

Concept and usage of the Asset Administration Shell

As a digital representation of an asset, the AAS provides information or functions related to a specific context through its submodels. Examples include digital nameplates, technical documents, the component or asset structure, simulation models, time series data, or sustainability-relevant information such as the carbon footprint. The information is generated along the various phases of the lifecycle, and it depends on the specific value network which asset information is of importance. Thus, submodels are initially created in certain lifecycle phases, specified and elaborated in subsequent phases, and enriched or updated with information in the further process. Thereby, the AAS refers to either a very generic (type) or a very concrete (instance) representation of an asset.

As assets change over time (as-defined, as-designed, as-ordered, as-built, as-maintained), so does the Asset Administration Shell. Thus, multiple AASs can exist for the same asset over the lifecycle. In order to utilize the information in the AAS within its value network, it needs to be accessible. Access is usually given via the Internet or via the cloud (repository-deployed AAS). In intelligent systems, the management shell can also be part of the asset itself (asset-deployed AAS).

Information can be exchanged in various ways. Either via files, so-called AASX files (AAS type 1), via a server-client interaction such as RestAPI (AAS type 2) or via peer-to-peer interaction (AAS type 3), in which the AASs communicate independently using the so-called I4.0 language and perform tasks cooperatively.

While type 1 and 2 take a passive role in the value network and are more likely to be used with repository-held AAS, type 3 describes an active participation in the value network and is more likely to be used with asset-held AAS running smart products.

Common standards connect!

No matter what type of Asset Administration Shell you choose: Important is that the recipient and the provider speak the same language. To achieve this, the exchange of concrete information must be standardized. Considering the amount of different industries, scenarios, assets, and functions, this is an immense number of submodels that need to be standardized. Organizations and associations such as the Industrial Digital Twin Association (IDTA), formed by research institutes, industrial companies, and software providers, are tackling this mammoth task. The rapidly growing number of members as well as the lively exchange at trade fairs and conferences among each other illustrate the potential for the industry. It is important not to leave SMEs behind, but to involve them in the standardization work in the best possible way.

Conclusion

The Asset Administration Shell is at the core of successful Industrie 4.0 scenarios. It enables manufacturer-independent interoperability and simplifies the integration of all types of assets into a collaborative value network. It increases efficiency within production processes by providing complete transparency of the real-time status of each asset. And it also offers a comprehensive security concept to protect the data. Within a very short time, the AAS has thus transformed from a theoretical construct to a real application in practice. Together with partners from research and industry, we are working within the ESCOM and Flex4Res research projects to make it usable on an industrial scale.

AAS in practice

In CONTACT Elements for IoT, you can create, manage and share asset administration shells. Our blog post ‘The asset administration shell in practice’ explains how companies benefit from this.