Die Bedeutung von User Experience für Cloud PLM

Welche Faktoren und Funktionen die Benutzerfreundlichkeit steigern

In einer zunehmend digitalisierten Welt spielen cloudbasierte Lösungen für das Product Lifecycle Management (PLM) eine entscheidende Rolle bei der effizienten Verwaltung von Produktdaten und Prozessen. Es gibt zahlreiche Anbieter am Markt, die Cloud-PLM-Software entwickeln. Neben den Funktionalitäten und der Preisgestaltung ist besonders die User Experience (UX) von entscheidender Bedeutung, weil sie die Akzeptanz durch die Nutzer:innen maßgeblich beeinflusst.

In diesem Blogbeitrag erfahren Sie, warum Sie eine benutzerfreundliche Cloud-PLM-Software auswählen sollten und was dabei zu beachten ist.

Warum UX wichtig ist

Die User Experience ist nicht nur ein nettes Extra bei einer Software, sondern ein wesentlicher Faktor, der maßgeblich darüber entscheidet, wie Benutzer:innen sie wahrnehmen, annehmen und nutzen.

Hier sind 5 Gründe, die verdeutlichen, warum Sie bei der Auswahl von Cloud-PLM-Software unbedingt auf Benutzerfreundlichkeit achten sollten:

  1. Nutzerzufriedenheit: Eine gelungene User Experience steigert die Nutzerzufriedenheit. Wenn Anwender:innen eine Software intuitiv verstehen und die Interaktion mit ihr als angenehm und belohnend empfinden, sind sie eher geneigt, diese erneut zu verwenden.
  2. Effizienz und Produktivität: Eine gut gestaltete Benutzeroberfläche und sinnvolle Interaktionsmöglichkeiten versetzen Benutzer:innen in die Lage, ihre Aufgaben schneller und effektiver zu erledigen.
  3. Reduzierung von Fehlern: Eine durchdachte UX hilft dabei, Fehler zu minimieren. Verständliche Anweisungen, eine klare Navigation und konsistente Designelemente tragen dazu bei, dass Nutzer:innen weniger Fehler machen und im Fall der Fälle schneller eine Lösung finden.
  4. Barrierefreiheit: Eine gute UX berücksichtigt die Vielfalt der Nutzerbasis und bezieht Menschen mit unterschiedlichen Fähigkeiten und Einschränkungen ein. Barrierefreie Designs ermöglichen allen Anwender:innen, die Software ohne Hürden zu bedienen.
  5. Wirtschaftlichkeit: Software mit einer intuitiven UX kann auf lange Sicht Kosten sparen, da Anwender:innen weniger Fehler machen und der Bedarf an Support und Schulungen sinkt.

Cloud-PLM und die Herausforderungen der Benutzerfreundlichkeit

Cloud-PLM-Systeme ermöglichen die zentrale Verwaltung von Produktinformationen in Echtzeit, was die Zusammenarbeit und Effizienz fördert. Dennoch bergen sie für Anwender:innen zunächst einige Herausforderungen: Sie müssen sich in eine neue Benutzeroberfläche einarbeiten, die Bedienung von komplexen Funktionen erlernen und mit Daten aus einer Vielzahl von Quellen hantieren. Eine ausgereifte UX unterstützt sie dabei, diese Herausforderungen zu bewältigen:

Intuitive Benutzeroberfläche: Die Benutzeroberfläche sollte einfach und intuitiv gestaltet sein, um eine schnelle Einarbeitung zu ermöglichen. Ein übersichtliches Design und sinnvoll platzierte Funktionen tragen dazu bei, dass Anwender:innen sich leicht zurechtfinden.

Benutzerdefinierte Dashboards & Diagramme: Mit benutzerdefinierten Dashboards und Terminplänen sehen Nutzer:innen auf einen Blick die wichtigsten Informationen und Funktionen, die für ihre Aufgaben relevant sind. Ein Beispiel dafür sind Gantt-Charts. Sie bieten Teammitgliedern einen klaren Überblick über den Projektverlauf, helfen bei der Identifizierung von Abhängigkeiten zwischen Aufgaben und vereinfachen die Ressourcenplanung. Die visuelle Darstellung erleichtert das Verständnis der Zeitpläne sowie die Kommunikation darüber und hilft, Engpässe oder Verzögerungen bei der Produktentwicklung frühzeitig zu erkennen und zielgerichtet gegenzusteuern.

Kollaborationswerkzeuge: Eine gute Cloud-PLM-Plattform sollte nahtlose Kollaborationsmöglichkeiten bieten. Echtzeit-Zusammenarbeit, Kommentarfunktionen und gemeinsame Bearbeitungsmöglichkeiten sind wichtig, um die Kommunikation und den Informationsaustausch zu erleichtern. Eine interne Kommunikationsplattform oder Social-Media-Funktion wie der Activity Stream verbindet alle Projektupdates und Konversationen an einem Ort – so gehen keine Informationen verloren.

Such- und Filterfunktionen: Neben einer Enterprise-Search-Funktion, die alle Dokumente im System durchsucht, helfen effiziente Such- und Filterfunktionen, schnell auf die benötigten Informationen zuzugreifen. Das ist besonders bei großen Datenmengen wichtig.

Integration mit anderen Systemen: Die nahtlose Integration mit anderen Unternehmenssystemen wie ERP (Enterprise Resource Planning) oder CAD (Computer-Aided Design) trägt dazu bei, dass alle relevanten Daten miteinander verknüpft sind und vermeidet Medienbrüche.

Benutzerführung und Schulung: Gute Tutorials und Schulungsmaterialien helfen Anwender:innen, die Software effektiv zu nutzen. Eine sorgfältig ausgearbeitete Onboarding-Strategie ist entscheidend, um die Einarbeitungszeit zu verkürzen.

Feedback-Mechanismen: Nutzer:innen sollten Feedback geben können, auf dessen Grundlage die Software kontinuierlich verbessert wird. Besonders gut eignet sich dafür eine eigene Community, die einen offenen Dialog zwischen den Entwickler:innen und Anwender:innen der Software ermöglicht.

Fazit

Für Cloud-PLM-Software ist eine hervorragende User Experience kein optionaler Bonus, sondern eine Notwendigkeit. Sie steigert Produktivität, Wirtschaftlichkeit und Nutzerzufriedenheit. Anwender:innen machen weniger Fehler bei der Arbeit und das gesamte Team – auch Mitglieder mit Handicap – können mühelos und effizient mit der Software arbeiten. Nutzerfreundliche Cloud-PLM-Systeme bieten intuitive Benutzeroberflächen, benutzerdefinierte Dashboards, Kollaborationswerkzeuge, Such- und Filterfunktionen, Schulungs- und Feedbackmöglichkeiten sowie Integrationsmöglichkeiten mit anderen Systemen.

CIM Database Cloud bietet Ihnen alle state-of-the-art PLM-Funktionen kombiniert mit einer intuitiven Bedienung und einer kurzen Einarbeitungszeit.

MES und MOM – Eine Begriffsklärung

Digitalisierung in der Fertigung

Die Produktion gehört zu den am stärksten optimierten industriellen Bereichen. Nicht ohne Grund, denn vermeidbarer Ausschuss oder Maschinenstillstände kosten nicht nur Zeit und Nerven, sondern vor allem viel Geld. Um das zu verhindern, sichern Unternehmen ihre Fertigung mit digitalen Systemen zur Organisation und Durchführung der Prozesse ab.
Häufig setzen sie dafür ein Manufacturing Execution System (MES) ein. In letzter Zeit rückt aber auch ein weiterer Begriff vermehrt in den Fokus: Das Manufacturing Operations Management, kurz MOM.

Dieser Blogbeitrag erklärt, wie MES und MOM zusammenhängen und worauf bei der Auswahl eines MES zu achten ist.

Was ist MES?

MES ist eine Software, mit der produzierende Unternehmen ihre Fertigung organisieren. Im Enterprise Resource Planning (ERP)-System erfolgt zunächst die Absatzplanung und entsprechende Fertigungsaufträge werden erstellt. Im Anschluss nutzt die Produktionsabteilung das MES, um diese Aufträge auszuführen.

Im MES wird entschieden, welches Personal welchen Fertigungsauftrag unter Verwendung welcher Betriebsmittel und Werkzeuge ausführt. Während der Produktion erfassen die Mitarbeitenden Betriebsdaten im System, die durch automatisch erhobene Daten aus den Maschinensteuerungen ergänzt werden können. Um die Produktqualität sicherzustellen, können Qualitätsprüfungen im MES geplant und deren Ergebnisse dokumentiert werden.

Das MES schafft also Transparenz innerhalb der Fertigungsabteilung. Abschließend melden Mitarbeitende ausgeführte Aufträge an das ERP-System zurück und stoßen damit die logistischen und kaufmännischen Folgeprozesse an.

Was ist MOM?

Manufacturing Operations Management (MOM) ist ein ganzheitliches Konzept mit dem Ziel, den Gesamtwertschöpfungsprozess zu optimieren. Das erreichen Unternehmen, indem sie ihre Fertigungsprozesse digital verwalten und fertigungsbezogene Informationen transparent über mehrere Abteilungen hinweg bereitstellen. Dabei gelten die Produktionsabläufe als integraler Bestandteil der abteilungsübergreifenden Geschäftsprozesse. Um die Kommunikation von der Fertigungs- bis zur Managementebene lückenlos zu gestalten, ist ein Informationsaustausch zwischen den unterschiedlichen IT-System-Domänen unerlässlich. Dazu gehören zum Beispiel:

  • Product Lifecycle Management (PLM) zur Produktentwicklung und um Arbeitsschritte in der Produktion zu planen,
  • Enterprise Ressource Planning (ERP) zur Absatzplanung und kaufmännischen Abwicklung von Aufträgen,
  • Manufacturing Execution Systems (MES), um Fertigungsaufträge auszuführen,
  • Quality Management Software (QMS), um die Produktqualität sicherzustellen,
  • Industrial Internet of Things (IIoT)-Plattform, um Daten aus der Maschinensteuerung und Sensorik zusammenzuführen und die Fertigungsprozesse in Echtzeit zu überwachen.

Das Zusammenspiel der IT-Systeme gestaltet die Zusammenarbeit der unterschiedlichen Abteilungen und Teams effizienter, was sich positiv auf den gesamten Wertschöpfungsprozess auswirkt.
Die Produktion arbeitet zu geringeren Fertigungskosten, kann kürzere Lieferzeiten und hohe Produktqualität realisieren. Darüber hinaus befähigt der ganzheitliche MOM-Ansatz Unternehmen darin sich besser auf ändernde Marktsituationen einzustellen, da er die Produktionsprozesse in den Gesamtwertschöpfungsprozess integriert.

Wie grenzen sich MES und MOM ab?

MES ist ein wichtiger Bestandteil des MOM-Ansatzes und fokussiert sich, als Software für den Einsatz im Shopfloor, hauptsächlich darauf, Aufgaben und Prozesse innerhalb der Produktion auszuführen.
MOM hingegen ist ein darüberliegendes Konzept, das die Produktionsabläufe in die Geschäftsprozesse der Gesamtwertschöpfung integriert. Der Ansatz zielt darauf ab die Wertschöpfungskette zu optimieren, indem Informationen über verschiedene Abteilungen hinweg koordiniert werden. Das Konzept beinhaltet daher neben der Ausführungsebene (MES-Funktionen), auch daran angrenzende Funktionen aus den Bereichen ERP, PLM, QMS, IIoT.

Worauf sollte bei der Auswahl eines MES geachtet werden?

Eine Herausforderung bei der Auswahl eines MES-Systems besteht darin, dass das gewählte System zur eigenen Fertigungsstruktur und den sich daraus ergebenen Bedürfnissen passt. Zum Beispiel benötigt die Prozessfertigung häufig eine Rezeptverwaltung, während in der diskreten Fertigung mit Stücklisten gearbeitet wird.

Darüber hinaus sollte darauf geachtet werden, dass sich das System leicht in die bestehende IT-Landschaft (z.B. PLM, ERP, QMS, IIoT-Plattform) und deren Prozesse integrieren lässt, da sich entsprechend dem MOM-Ansatz durch die abteilungsübergreifende Durchgängigkeit von Informationen die Effizienz der Gesamtwertschöpfung steigert.

Neben diesen beiden besonders wichtigen Kriterien sollten auch die folgenden Aspekte beachtet werden:

  • Erweiterbarkeit: Je nach Projektumfang können Projektrisiken minimiert werden, wenn zuerst einige MES-Grundfunktionen ausgerollt werden. Anschließend können Stück für Stück weitere Funktionsbereiche erschlossen werden, bis alle relevanten Prozesse integriert sind.
    Für dieses Vorgehen sollte die Software modular aufgebaut sein und Schritt für Schritt mit den eigenen Bedürfnissen wachsen.
  • Skalierbarkeit: Neben der inhaltlichen Erweiterung des MES um weitere Funktionsbereiche ist relevant, ob sich die Lösung auf alle Fertigungsstandorte skalieren lässt. Dazu gehört neben der Unterstützung der entsprechenden Sprachen auch die Fähigkeit, lokale Informationen an einer zentralen Stelle zusammenzuführen und auszuwerten. Schlussendlich muss auch der MES-Anbieter in der Lage sein, Einführungsprojekte global durchzuführen.
  • Anpassbarkeit: Produktionsabläufe sind so individuell wie die gefertigten Produkte. Je besser das MES die eigenen Prozesse und Informationsbedürfnisse bedient, desto größer ist der Nutzen.
  • Zukunftssicherheit: Die wirtschaftliche Resilienz des MES-Anbieters und dessen Affinität zur Integration neuer Technologien, wie zum Beispiel IIoT und künstlicher Intelligenz (KI), sind wichtige Faktoren für die langfristige Entwicklung des Systems.
  • User Experience (UX): Die Software muss für die Endanwender und -anwenderinnen intuitiv und attraktiv gestaltet sein, um Akzeptanzprobleme und aufwändige Schulungsmaßnahmen zu vermeiden. Das inhaltlich beste System ist wertlos, wenn es nicht richtig genutzt wird.

Wenn Sie ein MES für die diskrete Fertigung suchen und dabei dem MOM-Ansatz folgen möchten, dann könnte CONTACT Elements for IoT die passende Lösung für Sie sein. Das ganzheitliche Fertigungsmanagementsystem kombiniert herkömmliche MES-Funktionen mit fortschrittlichem Instandhaltungsmanagement, Energiemonitoring und einer nahtlosen IT-Integration.
Das Resultat: Kosteneinsparungen durch Ausschuss- und Stillstandsminimierung, sowie die Integration der Fertigung in den Gesamtwertschöpfungsprozess.

Zahlen, bitte! Energieeffizienz ist messbar

Energie, die wir nicht verbrauchen, ist die günstigste und klimaschonendste. Energieeffizienz liefert daher einen wichtigen Beitrag zur Energiewende und wir haben an vielen Stellen das Einsparpotenzial bereits ausgeschöpft: LED-Leuchtmittel sind mittlerweile Standard und energiefressende Verbraucher wie alte Kühlschränke oder Wasserboiler sind entweder ersetzt oder abgeschaltet. Bei CONTACT haben wir ein Projekt gestartet, um die Energieeffizienz in Bürogebäuden zu optimieren. Es ist erstaunlich, wie viel Einsparpotenzial noch vorhanden ist, obwohl die Mitarbeitenden bereits schonend mit den Ressourcen umgehen. Durch den Austausch elektrischer Geräte und der Klimaanlage im Serverraum sowie dem Abschalten und Zusammenführen alter Server konnte der Energieverbrauch um 50 % gesenkt werden. Das ist nicht nur ökologisch sinnvoll, sondern zahlt sich auch wirtschaftlich aus. Vieles ist mit wenig Aufwand möglich. Vorausgesetzt, die Verbrauchsdaten können geloggt und visualisiert werden.

Energieeffizienz nicht ohne Software

Im Bericht Energieeffizienz in Zahlen der Bundesregierung gibt es eine Übersicht, in der der Endenergieverbrauch in Deutschland nach Sparten Industrie, Verkehr, private Haushalte und Gewerbe/Handel/Dienstleistungen aufgeschlüsselt ist.

Fast ein Drittel des Endenergieverbrauchs in Deutschland entfällt auf die Prozesse in der Industrie. Um hier Effizienzsteigerungen zu erreichen, ist es wichtig, genauer in die industriellen Abläufe zu schauen. Ein Großteil der Energie (etwa zwei Drittel) geht auf Prozesswärme zurück, die beispielsweise in der Fertigung von Produkten eingesetzt wird. Um herauszufinden, welche Anlagen und Maschinen in der Fertigungshalle Einsparpotential besitzen, ist ein Monitoring und Controlling notwendig. Unsere Software-Plattform Elements for IoT bietet Unternehmen die Möglichkeit, ihre Verbrauchsdaten zu monitoren, grafisch darzustellen und zu analysieren. Dabei können Daten von Messstellen, die beispielsweise den Stromverbrauch messen, den einzelnen Maschinen und Produktionsprozessen zugeordnet werden. Zudem ist es möglich, auch Sensorwerte und Zustände der Maschinensteuerung zu verarbeiten und an einem Digitalen Zwilling der Maschine zusammenzuführen. Für die speziellen Anforderungen im Energiemanagement haben wir ein neues Modul entwickelt, das einen kontinuierlichen Verbesserungsprozess von Energiekennzahlen (gemäß ISO 50 001) darstellt. Angefangen vom Energieverbrauch, der nach verschiedenen Energiearten wie Strom oder Druckluft für eine Maschine im Shopfloor aufgeschlüsselt wird, lassen sich Verbrauchswerte bis hinunter zu einer gefertigten Einheit des Produktes berechnen. Das bietet auch die Möglichkeit, den entsprechenden CO2-Fußabdruck des gefertigten Produkts abzubilden. Das folgende Beispiel eines Dashboards einer Produktionsanlage zeigt die Zusammenfassung einer Schicht und liefert Informationen zum Energieverbrauch für den Produktionsprozess sowie zum durchschnittlichen Verbrauch für jedes gefertigte Teil aus dieser Schicht.  

Energieeffizienz in der Produktion

Die Energiekennzahlen können unterschiedlich eingesetzt werden, wobei die Audits gemäß der ISO 50 001 besonders hervorzuheben sind. Sie erfordern den Nachweis eines kontinuierlichen Verbesserungsprozesses. Neben der Umsetzung von Nachhaltigkeitskonzepten werden damit gleichzeitig Ressourcen wie Strom oder Gas eingespart.

Des Weiteren können die Energieinformationen zur Berechnung des CO2-Fußabdrucks dienen, der dann auch über Lieferketten hinweg ausgetauscht werden kann. Im Bereich dieses Datenaustauschs implementieren wir das Konzept der Verwaltungsschale, um die Integration des Submodells für den CO2-Footprint in unserer IoT-Plattform vorzunehmen.

Energieverbrauchsdaten können in der Fertigungsindustrie zudem dafür nützlich sein, die Produktionsprozesse zu optimieren. Durch die Zuordnung von Energieverbrauchsdaten zu den zeitgleich stattfindenden Prozessen können Analysen zeigen, welche Abschnitte besonders energieintensiv sind. Oftmals genügt der übliche Erfassungstakt von 15 Minuten für das Auslesen des Zählerstandes nicht, weil Daten in höherer Zeitauflösung erforderlich sind. Mit smarten Zählern sind Abtastraten im Minuten- oder gar Sekundenbereich möglich, so dass darauf aufbauende Analysen helfen können, die Produktionsprozesse zu optimieren.

KI-basierte Prognosen für den Energieverbrauch

Interessanterweise sind im Shopfloor immer wieder Maschinen anzutreffen, die im Standby-Betrieb auf den nächsten Fertigungsauftrag warten, auch wenn für die nächsten Stunden oder auch das bevorstehende Wochenende keine Aufträge anstehen. Optimiertes Abschalten der Maschine unter Berücksichtigung von Hochlaufzeiten kann direkt Energiekosten einsparen. Ein konkretes Beispiel hierfür ist die Implementierung eines Alarmmechanismus, der die Maschinenbedienenden basierend auf den geplanten Werkzeugwechseln, Fertigungs- oder Serviceaufträgen darüber informiert, wann es sinnvoll ist, die Maschine abzuschalten. Zudem wird auf dem Maschinen-Dashboard angezeigt, wann der nächste Auftrag ansteht. Untersuchungen anhand historischer Daten haben ergeben, dass für diese Maschine eine Einsparung von etwa 23 % der Stromkosten möglich ist. In der Abbildung des Dashboards ist die Abschaltempfehlung anhand der roten Ampel visualisiert. Außerdem ist angezeigt, um wieviel Kilowattstunden der prognostizierte Wert vom tatsächlich gemessenen Stromverbrauch abweicht. 

Die Prognose des Stromverbrauchs basiert auf Decision Trees und ist direkt in der Plattform umgesetzt. Dabei wird auf die Verbrauchsdaten über den digitalen Zwilling der Maschine zugegriffen. Das Inferenzmodell der Prognose verwendet die Daten der geplanten Fertigungsaufträge einschließlich Zeitdaten und Informationen zum zu fertigenden Material und berechnet daraus den zu erwartenden Stromverbrauch in Kilowattstunden. Weicht der tatsächlich gemessene Wert von der Prognose um ein festes Limit ab, informiert das System den oder die Verantwortliche/n über eine rote Ampel auf dem Dashboard.

Darüber setzt das Peak-Management Prognosen ein, um Lastspitzen zu vermeiden. Sind an einem Standort eines Produktionsunternehmens mehrere Maschinen oder Anlagen parallel in Betrieb, kann dies je nach Produktionsprozessen zu einem Überlagern von Spitzen des Energiebedarfs führen, und Sonderzahlungen zur Folge haben. Basierend auf den Prognosen für den Stromverbrauch ist oft eine Optimierung der Ausführungszeiten und Maschinenbelegungen möglich, um den Energieverbrauch gleichmäßiger zu verteilen und teure Strafzahlungen zu verhindern.

Die Daten eines digitalen Zwillings helfen Unternehmen, die Effizienz energieintensiver Anlagen zu steigern. Das gilt vor allem, wenn zusätzlich KI-Mechanismen zum Einsatz kommen. Welchen Mehrwert diese Kombination für das Energiemanagement in Unternehmen bringt, erläutern Dr. Nicole Göckel und Johann Heinrich im Fachartikel „Mit digitalen Zwillingen zu mehr Ertrag“.