Zahlen, bitte! Energieeffizienz ist messbar

Energie, die wir nicht verbrauchen, ist die günstigste und klimaschonendste. Energieeffizienz liefert daher einen wichtigen Beitrag zur Energiewende und wir haben an vielen Stellen das Einsparpotenzial bereits ausgeschöpft: LED-Leuchtmittel sind mittlerweile Standard und energiefressende Verbraucher wie alte Kühlschränke oder Wasserboiler sind entweder ersetzt oder abgeschaltet. Bei CONTACT haben wir ein Projekt gestartet, um die Energieeffizienz in Bürogebäuden zu optimieren. Es ist erstaunlich, wie viel Einsparpotenzial noch vorhanden ist, obwohl die Mitarbeitenden bereits schonend mit den Ressourcen umgehen. Durch den Austausch elektrischer Geräte und der Klimaanlage im Serverraum sowie dem Abschalten und Zusammenführen alter Server konnte der Energieverbrauch um 50 % gesenkt werden. Das ist nicht nur ökologisch sinnvoll, sondern zahlt sich auch wirtschaftlich aus. Vieles ist mit wenig Aufwand möglich. Vorausgesetzt, die Verbrauchsdaten können geloggt und visualisiert werden.

Energieeffizienz nicht ohne Software

Im Bericht Energieeffizienz in Zahlen der Bundesregierung gibt es eine Übersicht, in der der Endenergieverbrauch in Deutschland nach Sparten Industrie, Verkehr, private Haushalte und Gewerbe/Handel/Dienstleistungen aufgeschlüsselt ist.

Fast ein Drittel des Endenergieverbrauchs in Deutschland entfällt auf die Prozesse in der Industrie. Um hier Effizienzsteigerungen zu erreichen, ist es wichtig, genauer in die industriellen Abläufe zu schauen. Ein Großteil der Energie (etwa zwei Drittel) geht auf Prozesswärme zurück, die beispielsweise in der Fertigung von Produkten eingesetzt wird. Um herauszufinden, welche Anlagen und Maschinen in der Fertigungshalle Einsparpotential besitzen, ist ein Monitoring und Controlling notwendig. Unsere Software-Plattform Elements for IoT bietet Unternehmen die Möglichkeit, ihre Verbrauchsdaten zu monitoren, grafisch darzustellen und zu analysieren. Dabei können Daten von Messstellen, die beispielsweise den Stromverbrauch messen, den einzelnen Maschinen und Produktionsprozessen zugeordnet werden. Zudem ist es möglich, auch Sensorwerte und Zustände der Maschinensteuerung zu verarbeiten und an einem Digitalen Zwilling der Maschine zusammenzuführen. Für die speziellen Anforderungen im Energiemanagement haben wir ein neues Modul entwickelt, das einen kontinuierlichen Verbesserungsprozess von Energiekennzahlen (gemäß ISO 50 001) darstellt. Angefangen vom Energieverbrauch, der nach verschiedenen Energiearten wie Strom oder Druckluft für eine Maschine im Shopfloor aufgeschlüsselt wird, lassen sich Verbrauchswerte bis hinunter zu einer gefertigten Einheit des Produktes berechnen. Das bietet auch die Möglichkeit, den entsprechenden CO2-Fußabdruck des gefertigten Produkts abzubilden. Das folgende Beispiel eines Dashboards einer Produktionsanlage zeigt die Zusammenfassung einer Schicht und liefert Informationen zum Energieverbrauch für den Produktionsprozess sowie zum durchschnittlichen Verbrauch für jedes gefertigte Teil aus dieser Schicht.  

Energieeffizienz in der Produktion

Die Energiekennzahlen können unterschiedlich eingesetzt werden, wobei die Audits gemäß der ISO 50 001 besonders hervorzuheben sind. Sie erfordern den Nachweis eines kontinuierlichen Verbesserungsprozesses. Neben der Umsetzung von Nachhaltigkeitskonzepten werden damit gleichzeitig Ressourcen wie Strom oder Gas eingespart.

Des Weiteren können die Energieinformationen zur Berechnung des CO2-Fußabdrucks dienen, der dann auch über Lieferketten hinweg ausgetauscht werden kann. Im Bereich dieses Datenaustauschs implementieren wir das Konzept der Verwaltungsschale, um die Integration des Submodells für den CO2-Footprint in unserer IoT-Plattform vorzunehmen.

Energieverbrauchsdaten können in der Fertigungsindustrie zudem dafür nützlich sein, die Produktionsprozesse zu optimieren. Durch die Zuordnung von Energieverbrauchsdaten zu den zeitgleich stattfindenden Prozessen können Analysen zeigen, welche Abschnitte besonders energieintensiv sind. Oftmals genügt der übliche Erfassungstakt von 15 Minuten für das Auslesen des Zählerstandes nicht, weil Daten in höherer Zeitauflösung erforderlich sind. Mit smarten Zählern sind Abtastraten im Minuten- oder gar Sekundenbereich möglich, so dass darauf aufbauende Analysen helfen können, die Produktionsprozesse zu optimieren.

KI-basierte Prognosen für den Energieverbrauch

Interessanterweise sind im Shopfloor immer wieder Maschinen anzutreffen, die im Standby-Betrieb auf den nächsten Fertigungsauftrag warten, auch wenn für die nächsten Stunden oder auch das bevorstehende Wochenende keine Aufträge anstehen. Optimiertes Abschalten der Maschine unter Berücksichtigung von Hochlaufzeiten kann direkt Energiekosten einsparen. Ein konkretes Beispiel hierfür ist die Implementierung eines Alarmmechanismus, der die Maschinenbedienenden basierend auf den geplanten Werkzeugwechseln, Fertigungs- oder Serviceaufträgen darüber informiert, wann es sinnvoll ist, die Maschine abzuschalten. Zudem wird auf dem Maschinen-Dashboard angezeigt, wann der nächste Auftrag ansteht. Untersuchungen anhand historischer Daten haben ergeben, dass für diese Maschine eine Einsparung von etwa 23 % der Stromkosten möglich ist. In der Abbildung des Dashboards ist die Abschaltempfehlung anhand der roten Ampel visualisiert. Außerdem ist angezeigt, um wieviel Kilowattstunden der prognostizierte Wert vom tatsächlich gemessenen Stromverbrauch abweicht. 

Die Prognose des Stromverbrauchs basiert auf Decision Trees und ist direkt in der Plattform umgesetzt. Dabei wird auf die Verbrauchsdaten über den digitalen Zwilling der Maschine zugegriffen. Das Inferenzmodell der Prognose verwendet die Daten der geplanten Fertigungsaufträge einschließlich Zeitdaten und Informationen zum zu fertigenden Material und berechnet daraus den zu erwartenden Stromverbrauch in Kilowattstunden. Weicht der tatsächlich gemessene Wert von der Prognose um ein festes Limit ab, informiert das System den oder die Verantwortliche/n über eine rote Ampel auf dem Dashboard.

Darüber setzt das Peak-Management Prognosen ein, um Lastspitzen zu vermeiden. Sind an einem Standort eines Produktionsunternehmens mehrere Maschinen oder Anlagen parallel in Betrieb, kann dies je nach Produktionsprozessen zu einem Überlagern von Spitzen des Energiebedarfs führen, und Sonderzahlungen zur Folge haben. Basierend auf den Prognosen für den Stromverbrauch ist oft eine Optimierung der Ausführungszeiten und Maschinenbelegungen möglich, um den Energieverbrauch gleichmäßiger zu verteilen und teure Strafzahlungen zu verhindern.

Erfahren Sie in diesem Webcast von CONTACT Software und Limón mehr über die Implementierung einer ganzheitlichen Energiestrategie.  

Developer Experience – von intuitiv bis komplex

Es klingt nach einer spannenden Zukunftsvision: Anwender:innen jedes Fachbereichs nutzen vorgefertigte Programmbausteine, um schnell und einfach Simulationen, Optimierungsaufgaben oder Analysen mittels Künstlicher Intelligenz (KI) zu erstellen. Das können dann auch Fachabteilungen umsetzen, deren Mitarbeiter:innen nicht über Kenntnisse in einer höheren Programmiersprache verfügen. Soweit die Idee. Vorab müssen Entwickler:innen diese Programmbausteine natürlich erstellen, damit Fachanwender:innen daraus eine für ihre Anforderung passende Lösung zusammensetzen können.

KI-gestützte Analysen für die Fachabteilung

Gemeinsam mit unseren Partnern forschen wir im Projekt KI-Marktplatz daran, dieser Vision ein Stück näher zu kommen. Namensgebendes Ziel ist es, KI-Anwendungen auf dem Gebiet des Produktentstehungsprozess zu entwickeln und auf einer zentralen Handelsplattform anzubieten. Das Angebot soll zudem Services, wie zum Beispiel Seminare zu ausgewählten KI-Themen oder Auftragsentwicklungen sowie fertige KI-gestützte Apps und Programmblöcke für ganz spezielle Aufgaben umfassen. Die Entwicklung und Wiederverwendung der Apps befinden sich aktuell in der Erprobung. Parallel dazu evaluiert das Projektteam Nutzen und Qualität der Resultate.

Verschiedene Programmierebenen für eine breitere Anwendung

Soweit der Stand der Forschung, aber wie genau unterstützen wir bei CONTACT die Entwicklung wiederverwendbarer Programmbausteine, die Integration von Simulationsmodellen oder KI-gestützter Analysemethoden? Ein Beispiel für den Einsatz in der Praxis findet sich im Bereich der vorausschauenden Wartung (englisch: predictive maintenance). Vorausschauend heißt, dass Wartungszeiträume nicht wie bisher in festen Abständen stattfinden, sondern in Abhängigkeit von Betriebsdaten und Ereignissen an der Maschine oder Anlage berechnet werden. Unsere Plattform Elements for IoT stellt für solche Anwendungsfälle eine Lösung bereit, Betriebsdaten direkt zu analysieren. Dabei speichert der Digitale Zwilling die Daten der jeweiligen Maschine oder Anlage in einem eindeutigen Kontext. Diese lassen sich anhand einer blockbasierten Programmierung direkt abrufen und einfach auswerten. Mit der No-Code-Funktionalität der IoT-Plattform können Fachabteilungen Digitale Zwillinge intuitiv erstellen, automatische Regeln definieren und Ereignisse überwachen sowie Diagramme und Dashboards anlegen – ohne eine Zeile Code zu schreiben.

Darüber hinaus gibt es Anwendungen rund um den Digitalen Zwilling, die mehr Programmier-Know-how erfordern. Hierfür bietet die Plattform Analysten die Möglichkeit, mit einem Jupyter Notebook oder anderen Analysewerkzeug ihre Modelle in einer höheren Programmiersprache selbst zu entwickeln. Vor allem im Bereich des Prototyping ist Python die Sprache der Wahl. Es ist aber auch möglich, mit einer Compiler-basierten Programmiersprache wie C++ zu arbeiten. Eine kontinuierliche Berechnung der Prognosen erfolgt dann über eine Automatisierung der Modelle, die in einer Laufzeitumgebung zur Verfügung stehen. Die Ausführung des Codes erfolgt entweder in der eigenen IT-Infrastruktur oder direkt an der Anlage oder Maschine im Feld (Edge).

Dieses Vorgehen fassen wir unter dem Begriff Low-Code-Entwicklung zusammen, da nur noch der Code für die Entwicklung der Modelle geschrieben wird. Die Datenanbindung erfolgt über den Digitalen Zwilling und geschieht konfigurativ. Das Stück Programm-Code kann dann für verschiedene Anwendungen, wie beispielsweise Digitale Zwillinge innerhalb einer Flotte, als Programmblock wiederverwendet werden.

CONTACT Elements for IoT ist somit offen für Interaktionen auf unterschiedlichen Levels: Von der Verwendung vordefinierter Bausteine (No-Code), über die Möglichkeit, mit selbstgeschriebenem Programm-Code zu interagieren (Low-Code), bis zur Definition eigener Geschäftsobjekte und der Erweiterung der Plattform auf der Basis von Python.

Der Digitale Zwilling im Zeichen regenerativer Energie

Laut dem Bundesverband der Windenergie (BWE) liegt der Anteil der Windenergie an der deutschen Stromproduktion in diesem Jahr bei 27 Prozent, im Jahr 2020 stellte die Windenergie sogar die wichtigste Energiequelle im deutschen Strommix. Insgesamt sind mehr als 31.000 Anlagen installiert, die im Jahr 2019 89 Millionen Tonnen CO2-Equivalent eingespart haben. Windkraft ist somit eine tragende Säule für die CO2-arme und nachhaltige Energieerzeugung und liefert einen wichtigen Beitrag zur Energiewende. Die weitere Steigerung der Erträge bei gleichzeitiger Reduzierung der Wartungskosten ist deshalb von großer Bedeutung.

Mit smarten Systemen die Effizienz von Windparks steigern

Digitale Zwillinge sind das zentrale Element, um das volle Potenzial der Windkraft auszuschöpfen und die Erträge zu maximieren. Angetrieben von der Vision, ein datenbasiertes Entwicklungswerkzeug für die Windindustrie zu schaffen, startete vor eineinhalb Jahren das vom Bundesministerium für Wirtschaft und Energie geförderte Verbundprojekt WIND IO.

Unter Federführung des Instituts für integrierte Produktentwicklung BIK der Universität Bremen bauen wir hierfür mit mehreren Konsortialpartnern Forschungsanlagen als cyberphysische Systeme auf und rüsten diese mit Sensoren, Elektronik und Rechnern (sogenannte IoT-Gateways) nach. Dies ermöglicht es, alle Betriebsinformationen der realen Anlage digital abzubilden und an einem Digitalen Zwilling zusammenzuführen. Das Betriebsverhalten kann anhand des Digitalen Zwillings simuliert werden, was wiederum Erkenntnisse für weitere Optimierungen an der Windenergieanlage zulässt. Der Digitale Zwilling liefert hierzu nicht nur Informationen über den aktuellen Energieertrag, sondern bietet auch ein umfassendes Gesamtbild über den Zustand jeder einzelnen Anlage.

Verbesserte Montage-, Wartungs- und Instandhaltungsprozesse

Mit den gewonnenen Informationen lassen sich beispielsweise die Wartungs- und Instandhaltungsprozesse optimieren. So machen die Daten den Alterungsprozess von Bauteilen jederzeit transparent und geben bei Überschreitung festgelegter Grenzwerte automatisch Alarm. Der Digitale Zwilling ermittelt anhand der erhobenen Betriebs-, Umgebungs- und Wetterdaten zudem einen günstigen Wartungszeitpunkt der Anlage. Diese sollte idealerweise bei wenig Wind durchgeführt werden, um nicht auf Kosten der Energiegewinnung zu gehen.

Für die Berechnungen kommen hierbei sowohl statistische Methoden als auch Modelle aus dem Bereich der Künstlichen Intelligenz (KI) zum Einsatz. Diese Methoden helfen auch, den besten Zeitpunkt für den Aufbau einer Windkraftanlage zu bestimmen, da die Montage der Rotorblätter nur bei bestimmten Bedingungen erfolgen kann. Hierfür fließen neben den Wetterdaten zusätzliche Parameter, wie beispielsweise die Schwingung des Turms, in die Berechnungen mit ein.

Digitale Zwillinge für eine nachhaltige Industrie 

Das WIND IO Projekt zeigt anschaulich, welches Potenzial in der Digitalisierung und besonders im Konzept des Digitalen Zwillings steckt. Darüber hinaus können Unternehmen ihre Daten nutzen, um ganze Produktions- und Betriebszyklen zu simulieren. Dies ermöglicht es, den Ressourcenverbrauch zu minimieren, den Energieverbrauch zu reduzieren und gleichzeitig die Produktionsschritte effektiver aufeinander abzustimmen sowie die Transportwege zu optimieren. Konzepte wie der Digitale Zwilling und datenintensive Analysemethoden sind damit essenziell für eine schonende und effiziente Industrie.