Big, bigger, giant. The rise of giant AI models

The evolution of language models in the field of NLP (Natural Language Processing) has led to huge leaps in the accuracy of these models for specific tasks, especially since 2019, but also in the number and scope of the capabilities themselves. As an example, the GPT-2 and GPT-3 language models released with much media hype by OpenAI are now available for commercial use and have amazing capabilities both in type, scope, and accuracy, which I will discuss in another blog post. This was achieved in the case of GPT-3 by training using a model with 750 billion parameters on a data set of 570 GB. These are jaw-dropping values.

The larger the models, the higher the cost

However, the costs of training these models are also gigantic: Taking only the stated compute costs 1 for a complete training run, the total amount for training GPT-3 is 10 million USD 2, 3. In addition, there are further costs for pre-testing, storage, commodity costs for deployment, etc., which are likely to be in a similar amount. Over the past few years, the trend of building larger and larger models has been consistent, adding about an order of magnitude each year, i.e., the models are 10x larger than the year before.

Size of NLP models from 2018-2022. Parameter sizes are plotted logarithmically in units of billions. The red line represents the average growth: approx. 10-20 times larger models per year 2.

The next model of OpenAI GPT-4 is supposed to have about 100 trillion parameters (100 x 1012 ). For comparison, the human brain has about 100 billion neurons (100 x 109) which is 1000 times less. The theoretical basis for this gigantism is based on studies which show a clear scaling behavior between model size and performance 4. According to these studies, the so-called loss – a measure for the error of the predictions of the models – decreases by 1, if the model becomes 10 times larger. However, this only works if the computing power and the amount of training are also scaled upwards.

In addition to the enormous amounts of energy required to calculate these models and the associated CO2 footprint, which is assuming worrying proportions, there are direct economic consequences: Apparently, not only smaller companies cannot afford the cost of training such models, but also larger corporations are likely to balk at costs of $10 million, or $100 million or more in the future. Not to mention the necessary infrastructure and staffing for such an endeavor.

Monopoly position of the big players

This has a direct impact on availability: while the smaller models are now open source until the end of 2019 and can be freely accessed via specialized providers, this no longer applies to the larger models from around the end of 2020 (the appearance of GPT-2). OpenAI, for example, offers a commercialized API and only grants access through an approval process. On the one hand, this is convenient for developing applications with these NLP models, as the work of hosting and administration is eliminated; on the other hand, the barrier to entry for competitors in this market is so steep that essentially the super-big AI companies participate there: Google with OpenAI, Microsoft with Deepmind, and Alibaba.

The consequences of these monopoly positions of the leading AI companies are, as with every monopoly, pricing models without alternatives and rigid business practices. However, the capabilities of the current large language models such as GPT-3 and Megatron Turing NLG are already so impressive that it is foreseeable that in 10 years every company will probably need access to the current models for the most varied applications. Another problem is that the origin of the models from the American or Chinese area brings a large bias into the models, which on the one hand is clearly expressed in the fact that English or Chinese is the language with which the models work best. On the other hand, the training datasets that come from these cultural areas bring with them the very cultural tendencies from these spaces, so it is to be expected that other regions of the world will be underrepresented and continue to fall behind..

What can be done?

In my opinion, it is important to keep a careful eye on the development and to be more active in shaping the development of AI in the European area. In any case, a greater effort is needed to avoid dependence on monopolized AI providers in the long term. It is perhaps conceivable to involve national computing centers or research alliances that, united with companies, train and commercialize their own models and form a counterweight to American or Chinese companies. The next 10 years will be decisive here.

1 See here in section D as well as compute costs per GPU e.g. on Google Cloud approx. 1USD/hour for an NVIDIA V100
2 Calculation approach: V100 = 7 TFLOPs = 7 10^12 / s, 3.14 10^23 flops => 3.14 10^23/7×10^12 / 3600 = 10^7 hours = 10 million USD, details of the calculation and research of the parameters here.
3 see also here for comparison graph with older data.
4 see arxiv and Deepmind

Personas for business software – a gimmick or sustainable added value?

“Personas are just start-up knick-knacks, and for business software just a gimmick!” I’m sure many product developers have heard this before. I certainly have. But what is the truth behind the criticism that personas offer relevant added value for consumer products and are just creative add-ons for business software?

What are personas anyway?

Personas are fictitious people who represent typical representatives of a specific target group. They give product developers, customers and stakeholders an idea of who uses the product. In addition to a photo and name, personas typically include information on age, profession, free-time activities, family status and curriculum vitae, as well as typical needs and fears.

Personas in the context of business software

However, how do I deal with this as a product developer when my target group is primarily not people with individual needs and ideas, but with concrete professional challenges? For example, whether digital asset manager Diana Asmussen likes to play computers in her free time or go on vacation with her dogs is of no interest to product development. Diana steps into the spotlight with her professional needs as a digital asset manager and her requirements for an IoT system. When designing business software, employees should be addressed who want to complete their tasks efficiently and act in their roles and company processes.

CONTACT’s Personas

We at CONTACT therefore decided to create personas based on their roles and associated tasks within a fictitious company. We obtained input from our internal subject matter experts and customer interviews. Each persona has a task description and information on how to use CONTACT Elements.

Exemplary representation of the personas and team memberships of a fictitious customer

To be more specific, this means…

The holistic view of user needs provides valuable added value for product development – from knowledge building to quality assurance.

Personas make users more tangible and help new and long-standing product developers to get to know our target groups better.

By answering questions like: Who works with the 3D Cockpit? What does a user do in variant management? Or with whom does a CAE engineer interact? they know exactly for whom they are developing and can serve requirements in a more targeted manner. As sample users in concepts, demos and review systems, including all the rights they would have in a real environment, personas also ensure that work during development and quality assurance is user-centric.

But personas also have a high added value outside of product development. In presentations and in consulting, we use them to vividly depict scenarios, to build up understanding, and for identification.

So my answer to the initial question of whether personas are a gimmick or offer sustainable added value is clear: Personas are a central element in developing the best possible software for the user. They clarify needs, help to prioritize requirements, and promote a sustainable build-up of knowledge about the target groups company-wide.

What is Quantum Computing good for?

When it comes to quantum computing (QC), after the quite real breakthroughs in hardware and some spectacular announcements under titles like “Quantum Supremacy“, the usual hype cycle has developed with a phase of vague and exaggerated expectations. I would like to briefly outline here why the enormous effort is being made in this area and what realistic expectations lie behind it.

To understand the fundamental differences between QC and Classical Computing (CC), we first need to take a step back and ask on what basis both computing paradigms operate. For the CC, the basis is the universal Turing machine expressed in the ubiquitous von Neumann architecture. This may sound a bit outlandish, but in principle it is easy to understand: An universal Turing machine abstracts the fact of programming any algorithm into a classical computer (universal) that is somehow (classically) algorithmically expressible (Turing machine).

The vast majority of “algorithms” that are implemented in practice are simple sequences of actions that react to external events such as mouse clicks on a web page, transactions in a web store or messages from other computers in the network. A very very small, but important, number of programs do what is generally associated with the word algorithm, which is to perform arithmetic operations to solve a mathematical problem. The Turing machine is the adapted thought model for programming these problems and leads to programming languages having the constructs we are used to: loops, branches, elementary arithmetic operations etc.

What is the computing paradigm for a quantum computer?

A quantum computer is built up of quantum states that can be entangled with each other and evolved via quantum gates. This is also a bit off the wall, but simply means that a quantum computer is set to have an initial (quantum) state that evolves in time and is measured at the end. The paradigm for a quantum computer is therefore the Schrödinger equation, the fundamental equation of quantum mechanics. Even without understanding the details, it should be clear that everyday problems are difficult to squeeze into the formalism of quantum mechanics and this effort probably does not bring any profit: Quantum mechanics is just not the adjusted model of thought for the most (“everyday”) problems and it is also not more efficient in solving them.

So what can you do with it?

The answer is very simple: QC is essentially a method for quantum computing. Now this sounds redundant, but it means that a quantum computer is a universal machine to calculate quantum systems. This vision, formulated by Richard Feynman way back in 1981, is still followed by the logic of research today. Thus, it is not surprising that publications on the subject dealing with applications are located either in quantum chemistry or in the basic research of physics [5][6].

Why does this matter?

Because the classical computer is very inefficient in calculating or simulating quantum systems. This inefficiency is basically due to the mathematical structure of quantum mechanics and will not be solved by classical algorithms, no matter how good they are. In addition to basic research issues, QC is likely to become important in the hardware of classical computers, where miniaturization is pushing the limits of designing transistors on chips using classical theories of electricity. 

Besides, there are a lot of interesting connections to number theory and other various problems, which so far can be classified as interesting curiosities. Based on current knowledge, the connection to number theory alone could have a significant impact, because for historical reasons almost all practical asymmetric encryption schemes rely on algorithms that essentially assume (there is no proof) that prime number factorization cannot be solved efficiently with classical algorithms. Quantum computers can do this in principle but are far away from being able to do so in terms of hardware.