Groß, größer, gigantisch. Die Folgen der Riesenmodelle in der KI

Die Entwicklung der Sprachmodelle im Bereich NLP (Natural Language Processing) hat vor allem seit 2019 zu gewaltigen Sprüngen in der Genauigkeit dieser Modelle für bestimmte Aufgaben geführt, aber auch in der Anzahl und dem Umfang der Fähigkeiten an sich. Als Beispiel seien die mit viel Medienrummel von OpenAI veröffentlichen Sprachmodelle GPT-2 und GPT-3 genannt, die mittlerweile für den kommerziellen Einsatz verfügbar sind und sowohl in Art, Umfang  und Genauigkeit erstaunliche Fähigkeiten haben, auf die ich in einem anderen Blog-Post eingehen möchte. Dies wurde im Fall von GPT-3 durch Training mittels eines Modells mit 750 Milliarden Parametern auf einem Datensatz von 570 GB erreicht. Das sind Werte, die einem die Sprache verschlagen.

Je größer die Modelle, je höher die Kosten

Gigantisch sind aber auch die Kosten, die das Training dieser Modelle verschlingt: Setzt man nur die angegebenen Compute-Kosten 1 für einen kompletten Trainingslauf an, kommt man auf eine Größenordnung von 10 Millionen USD für das Training von GPT-3 2, 3. Hinzu kommen weitere Kosten für Vorversuche, Storage, Commodity-Kosten für die Bereitstellung etc., die in ähnlicher Größenordnung liegen dürften. In den vergangenen Jahren hat sich der Trend, immer größere Modelle zu bauen, verstetigt und jedes Jahr kommt ungefähr eine Größenordnung hinzu, d.h. die Modelle sind 10x größer als im Jahr davor.

Größe von NLP-Modellen von 2018-2022. Die Parametergrößen sind logarithmisch aufgetragen in Einheiten von Milliarden. Die rote Linie stellt das mittlere Wachstum dar:  ca. 10-20 mal größere Modelle pro Jahr 2.

Das nächste Modell von OpenAI GPT-4 soll ca. 100 Billionen Parameter haben (100 x 1012 ). Zum Vergleich: Das menschliche Gehirn hat ungefähr 100 Milliarden Neuronen (100 x 109) also 1000 mal weniger. Die theoretische Grundlage für diesen Gigantismus liefern Studien, die ein klares Skalenverhalten zwischen Größe des Modells und Performance belegen 4. Danach sinkt der sogenannte Verlust – ein Maß für die Fehlerhaftigkeit der Vorhersagen der Modelle – um 1, wenn das Modell 10mal größer wird. Das funktioniert aber nur wenn Rechenleistung und Trainingsmenge ebenfalls nach oben skaliert werden.

Neben den ungeheuren Mengen Energie, die das Berechnen dieser Modelle verschlingt und dem damit einhergehenden CO2-Footprint, der ein Besorgnis erregendes Ausmaß annimmt, ergeben sich direkte wirtschaftliche Folgen: Offenbar können nicht nur kleinere Unternehmen die Kosten für das Training solcher Modelle nicht stemmen, auch größere Konzerne dürften vor Kosten von 10 Mio. USD bzw. in Zukunft 100 Mio. USD oder mehr zurückschrecken. Ganz abgesehen von der notwendigen Infrastruktur und Personalausstattung für ein solches Unterfangen.

Monopolstellung der großen Player

Das hat direkte Auswirkungen auf die Verfügbarkeit: Während die kleineren Modelle bis Ende 2019 mittlerweile Open Source sind und über spezialisierte Provider frei zugreifbar, gilt das für die großen Modelle ab ca. Ende 2020 (dem Auftauchen von GPT-2) nicht mehr. OpenAI bietet zum Beispiel eine kommerzialisierte API für den Zugriff an und erteilt nur durch einen Genehmigungsprozess einen Zugang. Das ist einerseits für die Entwicklung von Applikationen mit diesen NLP-Modellen bequem, da die Arbeit des Hostings und der Administration entfällt, andererseits ist die Eintrittsbarriere für Wettbewerber in diesen Markt so steil, dass im Wesentlichen die super-großen KI-Firmen dort teilnehmen: Google mit OpenAI, Microsoft mit Deepmind und Alibaba.

Die Konsequenzen dieser Monopolstellungen der führenden KI-Unternehmen sind wie bei jedem Monopol alternativlose Preismodelle und starre Geschäftspraktiken. Die Fähigkeiten der jetzigen Large Language Models wie GPT-3 und Megatron Turing NLG sind allerdings schon so beeindruckend, dass abzusehen ist, dass wahrscheinlich in 10 Jahren jedes Unternehmen für die unterschiedlichsten Anwendungen Zugriff auf die dann aktuellen Modelle braucht. Ein weiteres Problem ist, dass die Herkunft der Modelle aus dem amerikanischen oder chinesischen Raum einen großen Bias in die Modelle bringt, der sich einerseits klarerweise darin ausdrückt, dass Englisch oder Chinesisch die Sprache ist, mit der die Modelle am Besten funktionieren. Andererseits bringen die Trainingsdatensätze, die aus diesen Kulturbereichen stammen, eben kulturellen Tendenzen aus diesen Räumen mit, so dass abzusehen ist, dass andere Regionen der Welt unterrepräsentiert sind und weiter ins Hintertreffen geraten.

Was kann man tun?

Ich glaube es ist wichtig, die Entwicklung sorgfältig im Auge zu behalten und die Entwicklung von KI im europäischen Raum aktiver zu gestalten. Es ist jedenfalls eine größere Anstrengung notwendig, um langfristig eine Abhängigkeit von monopolisierten KI-Providern zu vermeiden. Denkbar ist vielleicht die Einbindung von nationalen Rechenzentren oder Forschungsverbünden, die vereint mit Unternehmen eigene Modelle trainieren und kommerzialisieren und ein Gegengewicht zu amerikanischen oder chinesischen Unternehmen bilden. Die nächsten 10 Jahre werden hier entscheidend sein.

1 s. hier in Abschnitt D sowie Compute-Kosten per GPU z.B. auf Google Cloud ca. 1USD/hour für eine NVIDIA V100
2 Rechenansatz: V100 = 7 TFLOPs = 7 10^12 / s, 3.14 10^23 Flops => 3.14 10^23/7×10^12 / 3600 = 10^7 Stunden = 10 Mio USD, Details der Rechnung sowie Recherche der Parameter hier.
3 s. auch hier zum Vergleich Grafik mit älteren Daten.
4 s. arxiv und Deepmind


Personas für Business Software – Spielerei oder nachhaltiger Mehrwert?

„Personas sind doch Start-up-Schnick-Schnack und für Business Software nur Spielerei!” So oder so ähnlich haben das bestimmt viele Produktentwickler:innen schon einmal gehört. Ich in jedem Fall. Aber was ist dran an der Kritik, dass Personas eher für Consumer-Produkte einen relevanten Mehrwert bieten und für Business Software nur kreatives Beiwerk sind?

Was sind eigentlich Personas?

Personas sind fiktive Personen, die typische Vertreter:innen einer bestimmten Zielgruppe repräsentieren. Sie geben Produktentwickler:innen, Kunden und Stakeholdern eine Vorstellung davon, wer das Produkt nutzt. Typischerweise zeichnen sich Personas neben einem Foto und Namen noch durch Informationen zu Alter, Beruf, Freizeitaktivitäten, Familienstand und zum Lebenslauf sowie typischen Bedürfnissen und Ängsten aus.

Personas im Kontext von Business Software

Doch wie gehe ich als Produktentwickler:in damit um, wenn meine Zielgruppe in erster Linie nicht Personen mit individuellen Bedürfnissen und Vorstellungen sind, sondern mit konkreten beruflichen Herausforderungen?

Denn ob zum Beispiel die Digital Asset Managerin Diana Asmussen in ihrer Freizeit gerne Computer spielt oder mit ihren Hunden in den Urlaub fährt, ist für die Produktentwicklung uninteressant. Ins Rampenlicht tritt Diana mit ihren beruflichen Anforderungen als Digital Asset Managerin und ihren Anforderungen an ein IoT-System. Bei der Konzeption von Business Software sollten Arbeitnehmer:innen adressiert werden, die ihre Aufgaben effizient erledigen wollen und in ihren Rollen und Unternehmensprozessen agieren.

CONTACTs Personas

Bei CONTACT haben wir uns deshalb dazu entschieden, Personas innerhalb eines fiktiven Unternehmens basierend auf ihren Rollen und damit einhergehenden Aufgaben zu erstellen. Den Input haben wir von unseren internen Fachexperten und durch Kundeninterviews erlangt. Jede Persona besitzt eine Aufgabenbeschreibung und Informationen zur Nutzung von CONTACT Elements.

Exemplarische Darstellung der Personas und Abteilungszugehörigkeiten eines fiktiven Kunden.

Konkret heißt das…

Die ganzheitliche Sicht auf die Bedürfnisse der Anwender:innen liefert der Produktenwicklung wertvollen Mehrwert – vom Wissensaufbau bis hin zur Qualitätssicherung.

Personas machen die Anwender:inner greifbar und helfen neuen und langjährigen Produktentwickler:innen dabei, unsere Zielgruppen besser kennenzulernen.

Durch die Beantwortung von Fragen wie: Wer arbeitet mit dem 3D Cockpit? Was macht eine Anwenderin im Variantenmanagement? Oder Mit wem arbeitet ein CAE Ingenieur zusammen? wissen sie genau, für wen sie entwickeln und können Anforderungen zielgerichteter bedienen. Als Beispielanwender:innen in Konzepten, Demos und Review-Systemen inklusive aller Rechte, die sie auch in der Realität hätten, stellen Personas zudem sicher, dass auch während der Entwicklung und in der Qualitätssicherung nutzerzentriert gearbeitet wird.

Aber auch außerhalb der Produktentwicklung haben Personas einen hohen Mehrwert. In Präsentationen und in der Beratung nutzen wir sie zur lebhaften Darstellung von Szenarien, zum Verständnisaufbau und zur Identifikation.

Meine Antwort zur anfangs gestellten Frage, ob Personas Spielerei sind oder einen nachhaltigen Mehrwert bieten, fällt damit eindeutig aus: Personas sind ein zentrales Mittel, um im Sinne der Anwender:innen die für sie bestmögliche Software zu entwickeln. Sie verdeutlichen die Bedürfnisse, helfen dabei, Anforderungen zu priorisieren und fördern einen nachhaltigen Wissensaufbau über die Zielgruppen im gesamten Unternehmen.

Wofür ist Quantum Computing gut?

Beim Thema Quantum Computing (QC) hat sich nach den durchaus realen Durchbrüchen in der Hardware und einigen spektakulären Ankündigungen unter Titeln wie „Quantum Supremacy“ der übliche Hype Cycle entwickelt mit einer Phase von vagen und überzogenen Erwartungen. Ich möchte hier versuchen, kurz einzuordnen, warum der enorme Aufwand in diesem Bereich überhaupt getrieben wird und welche realistischen Erwartungen dahinter stecken.

Um die fundamentalen Unterschiede zwischen QC und Classical Computing (CC) zu verstehen, muss man zunächst einen Schritt zurücktreten und sich fragen, auf welcher Basis beide Computing-Paradigmen operieren. Für das CC ist die Basis die universelle Turing-Maschine ausgedrückt in der allgegenwärtigen von-Neumann-Architektur. Das mag ein wenig abgehoben klingen, ist aber im Grunde einfach zu verstehen: Eine universelle Turing-Maschine abstrahiert den Sachverhalt, dass man in einen klassischen Computer jeden Algorithmus einprogrammieren kann (universell), der irgendwie (klassisch) algorithmisch ausdrückbar ist (Turing-Maschine).

Die weitaus meisten „Algorithmen“, die praktisch implementiert werden, sind dabei schlichte Sequenzen von Aktionen, die auf äußere Ereignisse reagieren wie Mausklicks auf einer Webseite, Transaktionen im Web-Shop oder Meldungen von anderen Computern im Netzwerk. Ein sehr sehr geringer, wenn auch wichtiger Anteil von Programmen macht das, was man im Allgemeinen mit dem Wort Algorithmus assoziiert, nämlich das Durchführen von Rechenoperationen zur Lösung eines mathematischen Problems. Die Turing-Maschine ist das angepasste Denkmodell zur Programmierung dieser Probleme und führt dazu, dass Programmiersprachen die Konstrukte aufweisen, die man gewohnt ist: Schleifen, Verzweigungen, elementare Rechenoperationen etc.

Was ist das Computing-Paradigma für einen Quantencomputer?

Ein Quantencomputer ist aufgebaut aus Quantenzuständen, die miteinander verschränkt werden können und über Quantengatter evolviert werden. Ist auch ein bisschen abgehoben, heißt aber einfach ausgedrückt, dass ein Quantencomputer so eingestellt wird, dass er einen (Quanten)Anfangszustand hat, der sich in der Zeit entwickelt und zum Schluss gemessen wird. Das Paradigma für einen Quantencomputer ist deshalb die Schrödingergleichung, die fundamentale Gleichung der Quantenmechanik. Ohne die Details zu verstehen, dürfte klar sein, dass sich Allerweltsprobleme schwer in den Formalismus der Quantenmechanik pressen lassen und dieser Aufwand wahrscheinlich auch keinen Gewinn bringt: Die Quantenmechanik ist eben nicht das angepasste Denkmodell für die meisten (Allerwelts-)Probleme und bei der Lösung auch nicht effizienter.

Was kann man dann damit?

Die Antwort ist sehr einfach: QC ist im Wesentlichen eine Methode zum Quantum Computing. Das klingt jetzt redundant, heißt aber, dass ein Quantencomputer eine universelle Maschine ist, um Quantensysteme zu berechnen. Dieser Vision, die Richard Feynman schon 1981 formuliert hat, folgt die Logik der Forschung bis heute. So ist es wenig überraschend, dass die Veröffentlichungen zum Thema, die sich mit Anwendungen befassen, entweder in der Quantenchemie oder der Grundlagenforschung der Physik angesiedelt sind [5][6].

Warum ist das wichtig?

Weil der klassische Computer sehr ineffizient darin ist, Quantensysteme zu berechnen oder zu simulieren. Diese Ineffizienz ist prinzipiell begründet in der mathematischen Struktur der Quantenmechanik und wird sich durch noch so gute klassische Algorithmen nicht beheben lassen. Neben Fragen der Grundlagenforschung wird QC wahrscheinlich auch wichtig werden im Bereich der Hardware klassischer Computer, wo man im Zuge der Miniaturisierung an Grenzen der Auslegung von Transistoren auf den Chips mit Hilfe der klassischen Theorien zur Elektrizität stößt. 

Daneben gibt es eine Reihe interessanter Verbindungen zur Zahlentheorie und anderen diversen Problemen, die man bisher als interessante Kuriosa einstufen kann. Allein die Verbindung zur Zahlentheorie könnte nach jetzigem Wissensstand eine erhebliche Auswirkung haben, da sich aus historischen Gründen fast alle praktischen asymmetrischen Verschlüsselungsverfahren auf Algorithmen stützen, die im Wesentlichen annehmen (einen Beweis dafür gibt es nicht), dass die Primzahlfaktorisierung mit klassischen Algorithmen nicht effizient zu lösen ist. Quantencomputer können das im Prinzip, sind jedoch hardware-technisch weit davon entfernt, das zu realisieren.