Paving the way for sustainability: The Digital Product Passport

Have you ever wondered what information lies behind the products that shape our daily lives? From smartphones to food packaging, the Digital Product Passport (DPP) aims to show at first glance where a product comes from, how it was manufactured, whether and how it can be repaired. Therefore, the DPP has the potential to positively influence our consumption habits and will continue to be relevant for companies in the future.

Behind the scenes: The Digital Product Passport explained

The concept of the DPP was developed as part of the European Green Deal and the EU Circular Economy Action Plan. While it may sound abstract at first, it is already becoming a central element of sustainable consumption. Similar to a “passport”, it records all significant stages in a product’s lifecycle, offering detailed insights into production, repair, and disposal.

Why is this important?

Imagine being able to trace whether a product was produced sustainably and how environmentally friendly it is at the end of its life when making a purchase—the DPP provides these insights. It is no longer just a concept: the European Union has mandated its implementation, with all industries expected to comply by 2030. The ESG reporting obligation and supply chain law already require companies with more than 500 employees to collect their data. In Germany, the passport will first affect resource-intensive industries such as electronics, electric vehicles, industrial batteries, textiles, construction, packaging, and plastics.

What does the Digital Product Passport entail?

The German Institute for Standardization (DIN) and the German Commission for Electrical, Electronic, and Information Technologies (DKE) have set up a committee for the Digital Product Passport, aiming to define the technical design requirements for the DPP. This encompasses, for example, information carriers with standardized identifiers for the product, information on environmental impacts, durability, materials, suppliers, and more. To enable the adaption to different product groups and industries with a wide variety of data, the DPP requires a corresponding modular architecture.

How the Digital Product Passport will influence consumer behavior

The DPP offers consumers a clear view of a product’s entire journey, from creation to disposal or recycling. Its contribution to transparency could impact our consumption habits significantly. For example, by providing easy insight into environmental impacts, it encourages consumers to choose long-lasting products. Various levels of detail enable tailoring information to different target groups.

The DPP as a driver of sustainable circular economy

The DPP is more than just a passport for products: it drives sustainable growth in the circular economy. The Product Passport optimizes the product lifecycle, promotes standardization and sustainable design, improves resource and recycling efficiency, and helps with environmentally friendly procurement.

The DPP in business

For companies, it is important to prepare for the introduction of the DPP at an early stage. PLM systems like CIM Database PLM and advanced IT solutions alleviate much of the work. For instance, they can calculate LCA (Life Cycle Assessment) data directly from bills of materials and work plans and use material compliance methods to ensure safe material selection. IoT systems like CONTACT Elements for IoT provide additional production data, contributing to effective energy management.

A strategic step for a sustainable future?

The Digital Product Passport is not just a source of information but provides consumers with solid information to make responsible purchasing decisions. Companies can successfully prepare for DPP standards by expanding their PLM systems and IT solutions. Therefore, the Digital Product Passport is a strategic step and a guiding necessity for a sustainable future.

You can find a more in-depth take on the Digital Product Passport right here on the CONTACT Research Blog.

How PLM paves the way for sustainable product development

In today’s sustainability-driven world, ensuring transparency and traceability across the entire product lifecycle is crucial. Product Lifecycle Management (PLM) helps to tackle these challenges by providing a solid data foundation for informed decisions.

Challenges for companies: regulations and customer demands

Companies are often faced with regulatory challenges that influence the development of strategies and products. The European Green Deal and the Corporate Sustainability Reporting Directive (CSRD) provide a corresponding framework. At the same time, customers demand solutions that support sustainable product development, and the call for a green transformation grows louder. But how can companies take this step?

Companies in the green transition

The green transition is a monumental task for the industry. Sustainable development, as defined by the 1987 Brundtland Report, becomes a guiding principle. The goal is to meet the needs of the present without compromising the needs of future generations. With sustainable design as a core element of this movement, economic and ecological dimensions are aligned. Unlike approaches like Eco-design, Sustainable Design also integrates ethical aspects, human rights, and social justice, such as social aspects in the supply chain.

PLM as a key for sustainable product design

Every product goes through various lifecycle phases where decisions regarding material selection, design, and manufacturing processes are made. PLM systems like CIM Database PLM enable the consideration of sustainability principles as early as the design phase. Reducing waste, efficient use of energy, and recycling become integral parts starting from early design processes.

Read more about how PLM contributes to sustainable product development here.

Life Cycle Assessment (LCA) and PLM: An unmatched combination

Life Cycle Assessment (LCA) is another central approach for the evaluation of environmental impacts. By quantifying and assessing environmental impacts across the entire lifecycle of a product, companies can identify environmental aspects and potential effects.

PLM as a structural guide for sustainable products

The product structure, also known as Bill of Materials (BOM), is utilized by PLM as a structured guide. It enables accurate assessment of environmental impacts across the entire product range. Material properties, work schedules, and data aggregation support the selection of sustainable materials.

Material Compliance: Mastering regulations more easily

The selection of materials must not only be environmentally friendly but also legally compliant. This is where Material Compliance comes into play. A PLM system enables the management of product structures and material data as well as a smooth implementation of material compliance through the traceability of used materials.

Digital Product Passport for the circular economy

Transparency about materials and products is crucial for a successful circular economy. The Digital Product Passport acts as a carrier of information from the PLM system and provides a foundation for GHG reporting. The Asset Administration Shell (AAS) serves as a standardized technology for information exchange.

PLM for a sustainable future

Through a holistic view of the lifecycle, impacts and risks can be detected, assessed, and ultimately avoided at an early stage. CONTACT Research is committed to more sustainable product development in order to shape a harmonious future. Let’s tackle the challenges of sustainable product development together and leave a positive impact on the world!

Read the full article on the CONTACT Research Blog here.

The Digital Twin at the Center of Renewable Energy

According to the German Wind Energy Association (BWE), the share of wind energy in German electricity production this year is 27 percent, and in 2020 wind energy even represented the most important energy source in the German electricity mix. In total, more than 31,000 turbines have been installed, saving 89 million tons of CO2 equivalent in 2019. Wind power is thus a mainstay of low-CO2 and sustainable energy generation and makes an important contribution to the energy transition. Further increasing yields while reducing maintenance costs is therefore of great importance.

Increasing the efficiency of wind farms with smart systems

Digital Twins are the central element in exploiting the full potential of wind power and maximizing yields. Driven by the vision of creating a data-based development tool for the wind industry, the WIND IO joint project, funded by the German Federal Ministry for Economic Affairs and Energy, started a year and a half ago.

Under the leadership of the Institute for Integrated Product Development BIK at the University of Bremen, we are working with several consortium partners to build research facilities as cyber-physical systems and retrofit them with sensors, electronics and computers known as IoT gateways. This makes it possible to digitally map all the operating information of the real plant and combine it on a digital twin. The operating behavior can be simulated on the basis of the Digital Twin, which in turn provides insights for further optimization of the wind turbine. The Digital Twin not only provides information about the current energy yield, but also offers a comprehensive overall picture of the condition of each individual turbine.

Improved installation, maintenance and overhaul processes

The information obtained can be used, for example, to optimize maintenance and overhaul processes. For example, the data makes the aging process of components transparent at all times and automatically triggers an alarm if defined limit parameters are exceeded. The Digital Twin also uses the operating, environmental and weather data collected to determine a favorable time for maintenance of the plant. Ideally, this should be carried out when there is little wind, so as not to be at the expense of energy generation.

Both statistical methods and Artificial Intelligence (AI) models are used for the calculations. These methods also help to determine the best time to assemble a wind turbine, since the rotor blades can only be installed under certain conditions. For this purpose, in addition to weather data, additional parameters such as the vibration of the tower are included in the calculations.

Digital Twins for a sustainable industry 

The WIND IO project vividly demonstrates the potential of digitization and especially the concept of the Digital Twin. In addition, companies can use their data to simulate entire production and operating cycles. This makes it possible to minimize resource consumption, reduce energy consumption and at the same time coordinate production steps more effectively and optimize transport routes. Concepts such as the Digital Twin and data-intensive analysis methods are thus essential for a gentle and efficient industry.

With the data from a digital twin, companies can increase the efficiency of energy-intensive production facilities. Especially when they also use AI. The added value that this combination creates for energy management in companies is explained by Dr Nicole Göckel and Johann Heinrich in the technical article ‘Increasing yield with digital twins’.