Wofür ist Quantum Computing gut?

Beim Thema Quantum Computing (QC) hat sich nach den durchaus realen Durchbrüchen in der Hardware und einigen spektakulären Ankündigungen unter Titeln wie „Quantum Supremacy“ der übliche Hype Cycle entwickelt mit einer Phase von vagen und überzogenen Erwartungen. Ich möchte hier versuchen, kurz einzuordnen, warum der enorme Aufwand in diesem Bereich überhaupt getrieben wird und welche realistischen Erwartungen dahinter stecken.

Um die fundamentalen Unterschiede zwischen QC und Classical Computing (CC) zu verstehen, muss man zunächst einen Schritt zurücktreten und sich fragen, auf welcher Basis beide Computing-Paradigmen operieren. Für das CC ist die Basis die universelle Turing-Maschine ausgedrückt in der allgegenwärtigen von-Neumann-Architektur. Das mag ein wenig abgehoben klingen, ist aber im Grunde einfach zu verstehen: Eine universelle Turing-Maschine abstrahiert den Sachverhalt, dass man in einen klassischen Computer jeden Algorithmus einprogrammieren kann (universell), der irgendwie (klassisch) algorithmisch ausdrückbar ist (Turing-Maschine).

Die weitaus meisten „Algorithmen“, die praktisch implementiert werden, sind dabei schlichte Sequenzen von Aktionen, die auf äußere Ereignisse reagieren wie Mausklicks auf einer Webseite, Transaktionen im Web-Shop oder Meldungen von anderen Computern im Netzwerk. Ein sehr sehr geringer, wenn auch wichtiger Anteil von Programmen macht das, was man im Allgemeinen mit dem Wort Algorithmus assoziiert, nämlich das Durchführen von Rechenoperationen zur Lösung eines mathematischen Problems. Die Turing-Maschine ist das angepasste Denkmodell zur Programmierung dieser Probleme und führt dazu, dass Programmiersprachen die Konstrukte aufweisen, die man gewohnt ist: Schleifen, Verzweigungen, elementare Rechenoperationen etc.

Was ist das Computing-Paradigma für einen Quantencomputer?

Ein Quantencomputer ist aufgebaut aus Quantenzuständen, die miteinander verschränkt werden können und über Quantengatter evolviert werden. Ist auch ein bisschen abgehoben, heißt aber einfach ausgedrückt, dass ein Quantencomputer so eingestellt wird, dass er einen (Quanten)Anfangszustand hat, der sich in der Zeit entwickelt und zum Schluss gemessen wird. Das Paradigma für einen Quantencomputer ist deshalb die Schrödingergleichung, die fundamentale Gleichung der Quantenmechanik. Ohne die Details zu verstehen, dürfte klar sein, dass sich Allerweltsprobleme schwer in den Formalismus der Quantenmechanik pressen lassen und dieser Aufwand wahrscheinlich auch keinen Gewinn bringt: Die Quantenmechanik ist eben nicht das angepasste Denkmodell für die meisten (Allerwelts-)Probleme und bei der Lösung auch nicht effizienter.

Was kann man dann damit?

Die Antwort ist sehr einfach: QC ist im Wesentlichen eine Methode zum Quantum Computing. Das klingt jetzt redundant, heißt aber, dass ein Quantencomputer eine universelle Maschine ist, um Quantensysteme zu berechnen. Dieser Vision, die Richard Feynman schon 1981 formuliert hat, folgt die Logik der Forschung bis heute. So ist es wenig überraschend, dass die Veröffentlichungen zum Thema, die sich mit Anwendungen befassen, entweder in der Quantenchemie oder der Grundlagenforschung der Physik angesiedelt sind [5][6].

Warum ist das wichtig?

Weil der klassische Computer sehr ineffizient darin ist, Quantensysteme zu berechnen oder zu simulieren. Diese Ineffizienz ist prinzipiell begründet in der mathematischen Struktur der Quantenmechanik und wird sich durch noch so gute klassische Algorithmen nicht beheben lassen. Neben Fragen der Grundlagenforschung wird QC wahrscheinlich auch wichtig werden im Bereich der Hardware klassischer Computer, wo man im Zuge der Miniaturisierung an Grenzen der Auslegung von Transistoren auf den Chips mit Hilfe der klassischen Theorien zur Elektrizität stößt. 

Daneben gibt es eine Reihe interessanter Verbindungen zur Zahlentheorie und anderen diversen Problemen, die man bisher als interessante Kuriosa einstufen kann. Allein die Verbindung zur Zahlentheorie könnte nach jetzigem Wissensstand eine erhebliche Auswirkung haben, da sich aus historischen Gründen fast alle praktischen asymmetrischen Verschlüsselungsverfahren auf Algorithmen stützen, die im Wesentlichen annehmen (einen Beweis dafür gibt es nicht), dass die Primzahlfaktorisierung mit klassischen Algorithmen nicht effizient zu lösen ist. Quantencomputer können das im Prinzip, sind jedoch hardware-technisch weit davon entfernt, das zu realisieren.

Developer Experience – von intuitiv bis komplex

Es klingt nach einer spannenden Zukunftsvision: Anwender:innen jedes Fachbereichs nutzen vorgefertigte Programmbausteine, um schnell und einfach Simulationen, Optimierungsaufgaben oder Analysen mittels Künstlicher Intelligenz (KI) zu erstellen. Das können dann auch Fachabteilungen umsetzen, deren Mitarbeiter:innen nicht über Kenntnisse in einer höheren Programmiersprache verfügen. Soweit die Idee. Vorab müssen Entwickler:innen diese Programmbausteine natürlich erstellen, damit Fachanwender:innen daraus eine für ihre Anforderung passende Lösung zusammensetzen können.

KI-gestützte Analysen für die Fachabteilung

Gemeinsam mit unseren Partnern forschen wir im Projekt KI-Marktplatz daran, dieser Vision ein Stück näher zu kommen. Namensgebendes Ziel ist es, KI-Anwendungen auf dem Gebiet des Produktentstehungsprozess zu entwickeln und auf einer zentralen Handelsplattform anzubieten. Das Angebot soll zudem Services, wie zum Beispiel Seminare zu ausgewählten KI-Themen oder Auftragsentwicklungen sowie fertige KI-gestützte Apps und Programmblöcke für ganz spezielle Aufgaben umfassen. Die Entwicklung und Wiederverwendung der Apps befinden sich aktuell in der Erprobung. Parallel dazu evaluiert das Projektteam Nutzen und Qualität der Resultate.

Verschiedene Programmierebenen für eine breitere Anwendung

Soweit der Stand der Forschung, aber wie genau unterstützen wir bei CONTACT die Entwicklung wiederverwendbarer Programmbausteine, die Integration von Simulationsmodellen oder KI-gestützter Analysemethoden? Ein Beispiel für den Einsatz in der Praxis findet sich im Bereich der vorausschauenden Wartung (englisch: predictive maintenance). Vorausschauend heißt, dass Wartungszeiträume nicht wie bisher in festen Abständen stattfinden, sondern in Abhängigkeit von Betriebsdaten und Ereignissen an der Maschine oder Anlage berechnet werden. Unsere Plattform Elements for IoT stellt für solche Anwendungsfälle eine Lösung bereit, Betriebsdaten direkt zu analysieren. Dabei speichert der Digitale Zwilling die Daten der jeweiligen Maschine oder Anlage in einem eindeutigen Kontext. Diese lassen sich anhand einer blockbasierten Programmierung direkt abrufen und einfach auswerten. Mit der No-Code-Funktionalität der IoT-Plattform können Fachabteilungen Digitale Zwillinge intuitiv erstellen, automatische Regeln definieren und Ereignisse überwachen sowie Diagramme und Dashboards anlegen – ohne eine Zeile Code zu schreiben.

Darüber hinaus gibt es Anwendungen rund um den Digitalen Zwilling, die mehr Programmier-Know-how erfordern. Hierfür bietet die Plattform Analysten die Möglichkeit, mit einem Jupyter Notebook oder anderen Analysewerkzeug ihre Modelle in einer höheren Programmiersprache selbst zu entwickeln. Vor allem im Bereich des Prototyping ist Python die Sprache der Wahl. Es ist aber auch möglich, mit einer Compiler-basierten Programmiersprache wie C++ zu arbeiten. Eine kontinuierliche Berechnung der Prognosen erfolgt dann über eine Automatisierung der Modelle, die in einer Laufzeitumgebung zur Verfügung stehen. Die Ausführung des Codes erfolgt entweder in der eigenen IT-Infrastruktur oder direkt an der Anlage oder Maschine im Feld (Edge).

Dieses Vorgehen fassen wir unter dem Begriff Low-Code-Entwicklung zusammen, da nur noch der Code für die Entwicklung der Modelle geschrieben wird. Die Datenanbindung erfolgt über den Digitalen Zwilling und geschieht konfigurativ. Das Stück Programm-Code kann dann für verschiedene Anwendungen, wie beispielsweise Digitale Zwillinge innerhalb einer Flotte, als Programmblock wiederverwendet werden.

CONTACT Elements for IoT ist somit offen für Interaktionen auf unterschiedlichen Levels: Von der Verwendung vordefinierter Bausteine (No-Code), über die Möglichkeit, mit selbstgeschriebenem Programm-Code zu interagieren (Low-Code), bis zur Definition eigener Geschäftsobjekte und der Erweiterung der Plattform auf der Basis von Python.

Der Digitale Zwilling im Zeichen regenerativer Energie

Laut dem Bundesverband der Windenergie (BWE) liegt der Anteil der Windenergie an der deutschen Stromproduktion in diesem Jahr bei 27 Prozent, im Jahr 2020 stellte die Windenergie sogar die wichtigste Energiequelle im deutschen Strommix. Insgesamt sind mehr als 31.000 Anlagen installiert, die im Jahr 2019 89 Millionen Tonnen CO2-Equivalent eingespart haben. Windkraft ist somit eine tragende Säule für die CO2-arme und nachhaltige Energieerzeugung und liefert einen wichtigen Beitrag zur Energiewende. Die weitere Steigerung der Erträge bei gleichzeitiger Reduzierung der Wartungskosten ist deshalb von großer Bedeutung.

Mit smarten Systemen die Effizienz von Windparks steigern

Digitale Zwillinge sind das zentrale Element, um das volle Potenzial der Windkraft auszuschöpfen und die Erträge zu maximieren. Angetrieben von der Vision, ein datenbasiertes Entwicklungswerkzeug für die Windindustrie zu schaffen, startete vor eineinhalb Jahren das vom Bundesministerium für Wirtschaft und Energie geförderte Verbundprojekt WIND IO.

Unter Federführung des Instituts für integrierte Produktentwicklung BIK der Universität Bremen bauen wir hierfür mit mehreren Konsortialpartnern Forschungsanlagen als cyberphysische Systeme auf und rüsten diese mit Sensoren, Elektronik und Rechnern (sogenannte IoT-Gateways) nach. Dies ermöglicht es, alle Betriebsinformationen der realen Anlage digital abzubilden und an einem Digitalen Zwilling zusammenzuführen. Das Betriebsverhalten kann anhand des Digitalen Zwillings simuliert werden, was wiederum Erkenntnisse für weitere Optimierungen an der Windenergieanlage zulässt. Der Digitale Zwilling liefert hierzu nicht nur Informationen über den aktuellen Energieertrag, sondern bietet auch ein umfassendes Gesamtbild über den Zustand jeder einzelnen Anlage.

Verbesserte Montage-, Wartungs- und Instandhaltungsprozesse

Mit den gewonnenen Informationen lassen sich beispielsweise die Wartungs- und Instandhaltungsprozesse optimieren. So machen die Daten den Alterungsprozess von Bauteilen jederzeit transparent und geben bei Überschreitung festgelegter Grenzwerte automatisch Alarm. Der Digitale Zwilling ermittelt anhand der erhobenen Betriebs-, Umgebungs- und Wetterdaten zudem einen günstigen Wartungszeitpunkt der Anlage. Diese sollte idealerweise bei wenig Wind durchgeführt werden, um nicht auf Kosten der Energiegewinnung zu gehen.

Für die Berechnungen kommen hierbei sowohl statistische Methoden als auch Modelle aus dem Bereich der Künstlichen Intelligenz (KI) zum Einsatz. Diese Methoden helfen auch, den besten Zeitpunkt für den Aufbau einer Windkraftanlage zu bestimmen, da die Montage der Rotorblätter nur bei bestimmten Bedingungen erfolgen kann. Hierfür fließen neben den Wetterdaten zusätzliche Parameter, wie beispielsweise die Schwingung des Turms, in die Berechnungen mit ein.

Digitale Zwillinge für eine nachhaltige Industrie 

Das WIND IO Projekt zeigt anschaulich, welches Potenzial in der Digitalisierung und besonders im Konzept des Digitalen Zwillings steckt. Darüber hinaus können Unternehmen ihre Daten nutzen, um ganze Produktions- und Betriebszyklen zu simulieren. Dies ermöglicht es, den Ressourcenverbrauch zu minimieren, den Energieverbrauch zu reduzieren und gleichzeitig die Produktionsschritte effektiver aufeinander abzustimmen sowie die Transportwege zu optimieren. Konzepte wie der Digitale Zwilling und datenintensive Analysemethoden sind damit essenziell für eine schonende und effiziente Industrie.