ISO 27001 Zertifizierung: Sicherheit als Standard unserer Cloud-Produkte

Die Digitalisierung prägt unsere Lebens- und Arbeitswelt wie nie zuvor. Mit dieser Entwicklung wächst die Verantwortung, Daten effektiv zu schützen und eine stabile Servicebereitstellung sicherzustellen gleichermaßen. Informationssicherheit ist längst kein „should“ mehr, sondern ein absolutes „must“.

Als Anbieter industrieller Software-Lösungen aus der Cloud stehen Qualität, Sicherheit und Zuverlässigkeit für uns an erster Stelle. Daher freuen wir uns sehr über die erfolgreiche ISO 27001 Zertifizierung durch Datenschutz Cert. Dies bestätigt unseren Anspruch, Produkte bereitzustellen, die höchsten Sicherheitsstandards entsprechen und Daten wirksam schützen.

Mit Automatisierung zu mehr Sicherheit, Effizienz und Nachhaltigkeit

Unser Ziel war von Anfang an klar: Sicherheits- und Stabilitätsanforderungen mit innovativen Technologien zu erfüllen. Dafür setzen wir konsequent auf Automatisierung und Infrastructure as Code (IaC). Diese Maßnahmen erlauben uns, Sicherheitsmechanismen nicht nur effektiv umzusetzen, sondern sie auch nahtlos in unsere Entwicklungs- und Betriebsprozesse zu integrieren.

Ein entscheidender Aspekt unserer Vorbereitungen war es, Klimarisiken mit einzubeziehen. Ereignisse wie Extremwetter stellen potenzielle Gefahren für IT-Infrastrukturen dar. Daher haben wir Lösungen entwickelt, die sowohl Risiken minimieren als auch die Effizienz steigern – etwa durch Monitoring-Tools und automatisierte Skalierung. Diese Technologien reduzieren nicht nur unsere CO2-Bilanz, sondern tragen auch dazu bei, ein hohes Maß an Sicherheit und Nachhaltigkeit zu gewährleisten.

Sicherheitskultur als Erfolgsfaktor

Informationssicherheit ist mehr als das Erfüllen von Standards – sie ist ein fester Bestandteil unserer Unternehmenskultur. Prinzipien wie Hochverfügbarkeit, Automatisierung und die Nutzung einer Single Source of Truth prägen unsere Arbeitsweise und fördern eine strukturierte Herangehensweise an komplexe Herausforderungen.

Besonders hervorzuheben ist der Beitrag unseres Teams. Regelmäßige Schulungen und ein hohes Sicherheitsbewusstsein sorgen dafür, dass Informationssicherheit nicht nur als Aufgabe der IT betrachtet wird, sondern im gesamten Unternehmen gelebt wird. Diese ganzheitliche Denkweise war ein zentraler Baustein auf unserem Weg zur ISO 27001 Zertifizierung.

Unsere Automatisierungsstrategien sind ein weiteres Beispiel dafür, wie wir Effizienz und Sicherheit miteinander verbinden. Durch die Standardisierung von Prozessen reduzieren wir menschliche Fehler und schaffen gleichzeitig die Grundlage für eine kontinuierliche Weiterentwicklung.

Mehrwert für Kunden und Partner

Für unsere Kunden bedeutet die Zertifizierung vor allem eines: Vertrauen. Die Zertifizierung nach ISO 27001 ist ein international anerkanntes Gütesiegel und bestätigt, dass wir höchste Sicherheitsstandards einhalten. Dies stärkt nicht nur die Zuverlässigkeit unserer Cloud-Produkte, sondern gibt unseren Kunden auch die Gewissheit, dass ihre Daten in sicheren Händen sind.

Auch für unsere Partner bietet die Zertifizierung viele Vorteile. Standardisierte Prozesse und klar definierte Sicherheitsanforderungen erleichtern die Zusammenarbeit, steigern die Effizienz und schaffen eine vertrauensvolle Basis für zukünftige Projekte. Gerade in einem dynamischen Umfeld wie der Cloud-Industrie ist dies ein entscheidender Wettbewerbsvorteil.

Unsere Vision für die Zukunft

Die ISO 27001 Zertifizierung ist für uns kein Endpunkt, sondern ein Meilenstein auf dem Weg, unserer Sicherheitsmaßnahmen immer weiterzuentwickeln. So planen wir beispielsweise, unsere Monitoring-Systeme noch leistungsfähiger zu machen, um potenzielle Risiken nicht nur schneller zu erkennen, sondern auch gezielt zu adressieren. Darüber hinaus wollen wir unser Partnernetzwerk stärken und mit Self-Service-Portalen sowie standardisierten Templates die Zusammenarbeit noch einfacher und effizienter gestalten. Die digitale Landschaft verändert sich ständig – wir sind bereit, uns diesen Herausforderungen zu stellen und die Sicherheit unserer Kunden, Partner und deren Daten zu gewährleisten.

In Minuten zur Designentscheidung – Wie KI die Produktentwicklung unterstützt

Künstliche Intelligenz (KI) ist in aller Munde und spielt auch in der Produktentwicklung eine immer größere Rolle. Doch wie lässt sich diese Technologie sinnvoll in Entwicklungsprojekte integrieren? Gemeinsam mit unserem Kunden Audi haben wir die Probe aufs Exempel gemacht und die Potenziale und Herausforderungen einer Machine Learning (ML)-Anwendung – als Teilbereich von KI – an einem realen Projekt untersucht. Für den Einsatz wählten wir ein Crash-Management-System (CMS). Es ist einerseits einfach genug, um ein nutzbringendes Ergebnis zu erreichen und gleichzeitig kompliziert genug, um die generelle Anwendbarkeit der der ML-Methode hinreichend zu testen.

Fachwissen als Schlüssel

ML lässt sich nur insoweit sinnvoll nutzen, wie es die zugrundeliegende Datenbasis erlaubt. Deshalb spielt das Know-how der beteiligten Fachleute eine entscheidende Rolle. Zum Beispiel geben Konstrukteurinnen und Konstrukteure ihr Wissen über Fertigungs- und Bauraumbeschränkungen, verwendbare Materialien und Abhängigkeiten in das CAD-Modell. Berechnungsingenieure und -ingenieurinnen teilen ihr Wissen über den Simulationsprozess und die Data Scientists unterstützen beim Sampling und der Auswertung.

Die Erstellung tausender Design- und korrespondierender Simulationsmodelle, wie sie für den Einsatz von Machine Learning (ML) erforderlich ist, stellt ohne Automatisierung eine enorme Herausforderung dar. Die FCM CAT.CAE-Bridge, ein speziell entwickeltes Plug-In für CATIA, ermöglicht eine nahtlose Automatisierung über alle Prozessschritte hinweg. Darüber hinaus verankert sie alle Informationen für die Simulation (Material, Eigenschaften, Solver und viele weitere) bereits im CAD-Modell. Die vollautomatische Übersetzung in ein Simulationsfile erfolgt dann mit Tools wie ANSA oder Hypermesh.

Automatisierter Prozess: Sampling, DoE, Modellerstellung, Simulation, Auswertung mit anschließendem Training der ML-Modelle. (© CONTACT Software)

Präzise Verknüpfung von Parametern und Ergebnissen

Unser Ansatz gewährleistet, dass die Beziehung zwischen dem CAD-Modell und dem Simulationsmodell vollständig erhalten bleibt. Die automatisierte Berechnung und Auswertung der Modelle auf die spezifischen Ergebnisse hin schafft eine sehr gute Datengrundlage für den ML-Prozess. Die Vektoren aus Eingabeparametern mit korrespondierenden Ergebniswerten stellen die Basis für den ML-Ansatz – eindeutig und umfassend.

Basierend auf eingegrenzten Ergebnisvektoren (rot) gefundene Inputparameter (blau), die die Anforderungen erfüllen. (© CONTACT Software)

Auf den damit trainierten Modellen und der darin bekannten Genauigkeit lassen sich dann schnell Parametervariationen durchspielen und die Auswirkung auf das Verhalten ableiten, buchstäblich in Minuten. Sobald die optimalen Parameter identifiziert sind, werden diese automatisch in das CAD-Modell übertragen und der Designprozess kann fortgesetzt werden.

Fazit

Unser Projekt hat gezeigt, dass ML eine valide Methode für das Design-Engineering ist. Die Kombination aus parametrischen CAD-Modellen, Simulation und Machine Learning bietet eine effiziente Herangehensweise, um Designentscheidungen schnell und präzise zu treffen. Voraussetzung dafür liegen in einer robusten Datenbasis und in der Zusammenarbeit der relevanten Know-how-Träger am Modell. Die guten Ergebnisse aus dem Audi-Projekt zeigen das Potenzial unseres datenbasierten Ansatzes für die Produktentwicklung.

Die Verwaltungsschale in der Praxis

Was ist eine Verwaltungsschale?

Industrie 4.0 verspricht effizientere und nachhaltigere Fertigungsprozesse via Digitalisierung. Die Grundlage hierfür entsteht durch den reibungslosen, automatischen Austausch von Informationen zwischen Anlagen und Produkten. Hier kommt die Verwaltungsschale (VWS; englisch: Asset Administration Shell) ins Spiel.

Eine Verwaltungsschale ist ein anbieterunabhängiger Standard für die Beschreibung Digitaler Zwillinge. Im Grunde ist sie das digitale Abbild eines Assets; entweder eines physischen Produkts oder eines virtuellen Gegenstands (z. B. Dokumente oder Software).

Die VWS definiert das Erscheinungsbild des Assets in der digitalen Welt. Sie beschreibt, welche Informationen eines Gerätes für die Kommunikation relevant sind und wie diese Informationen dargestellt werden. Die VWS eines Gegenstands kann damit alle wichtigen Daten über das Asset standardisiert und automatisiert bereitstellen.

Um zu verstehen, welchen Mehrwert eine VWS der Industrie bietet, hilft ein Blick in die Praxis.

Praxisbeispiel: VWS als Basis für neue Dienstleistungen

Im Rahmen des Forschungsprojekts ESCOM arbeitet CONTACT Software mit der GMN Paul Müller Industrie GmbH & Co. KG an der Umsetzung VWS-basierter Komponenten-Services. Das familiengeführte Unternehmen produziert Motorspindeln, die von seinen Kunden als Komponenten in Werkzeugmaschinen für die Metallbearbeitung eingebaut und anschließend weiterverkauft werden.

Bereits vor Beginn des Projektes hatte GMN eine neue Sensortechnologie entwickelt. Sie ermöglicht tiefe Einblicke in das Verhalten der Spindel und gewährt Aussagen zum ganzheitlichen Betrieb des Spindelsystems. Diese Informationen will die Firma nutzen, um neue, produktbegleitende Dienstleistungen anzubieten:

  • Zertifizierte Inbetriebnahme: Bevor GMN seine Spindeln ausliefert, werden die Komponenten auf dem hauseigenen Prüfstand einem festgelegten Prüfzyklus unterzogen. Mit den Daten aus diesem Referenzzyklus will das Unternehmen sicherstellen, dass Motorspindeln im Kundenunternehmen korrekt verbaut und in Betrieb genommen werden.
  • Prediktive Services: Einsatzdaten, die Rückschlüsse zur Verfügbarkeit und zum Betrieb der Spindeln erlauben, sollen Kunden mit der sensorischen Mikroelektronik IDEA-4S kontinuierlich erfassen und analysieren können. Im Bedarfsfall können die Daten gemeinsam mit GMN genutzt werden, zum Beispiel für Problemanalysen. Dies spart wertvolle Zeit bis zur Wiederinbetriebnahme der Bearbeitungsmaschine. Perspektivisch kann das Unternehmen vorausschauende Service-Angebote wie Predictive Maintenance realisieren.

Über die GMN Paul Müller Industrie GmbH

Die GMN Paul Müller Industrie GmbH ist ein familiengeführtes Maschinenbauunternehmen mit Sitz in Nürnberg. Es produziert Hochpräzisionskugellager, Maschinenspindeln, Freiläufe, berührungslose Dichtungen sowie elektrische Antriebe, die in zahlreichen Industrien zum Einsatz kommen. Einen Großteil dieser Komponenten fertigt die Firma individuell für ihre Kunden am Standort und vertreibt seine Produkte über ein weltweites Vertriebsnetzwerk.

Wie werden die neuen Angebote umgesetzt?

Für solche Services müssen Unternehmen auf die Sensordaten ihrer Maschinen zugreifen und diese analysieren können. Zugleich gilt es, Maschinen (bzw. deren Komponenten) zu befähigen, selbstständig mit anderen Assets und Systemen rund um den Shopfloor zu kommunizieren. Für beide Aufgaben nutzt GMN die Plattform CONTACT Elements for IoT. Die modular aufgebaute Software hilft dem Unternehmen nicht nur, die Referenz- und Einsatzdaten der Spindeln zu erfassen, zu dokumentieren und auszuwerten. Sie enthält auch Funktionen, mit denen User die VWS für ein Asset anlegen, befüllen und verwalten können.

Hintergrund

Bei der Realisierung der Services, die auf Betriebsdaten der Spindel basieren, profitiert GMN von der Zusammenarbeit mit einem Kunden. Dieser verbaut die Spindeln in Bearbeitungsmaschinen, die GMN zur Herstellung eigener Produkte einsetzt. Daher kann GMN die Betriebsdaten in-house gewinnen und zur Verbesserung der nächsten Spindelgeneration verwenden.

Welche Rolle spielt die Verwaltungsschale?

Damit die Komponenten Informationen in standardisierter Form austauschen können, muss für die Spindel auf Artikel- und Seriennummernebene eine AAS angelegt werden. Auch dies geschieht in CONTACT Elements for IoT. Die neuen Services werden darin in einem sogenannten VWS-Metamodell abgebildet. Es dient als „Absprungpunkt“ zu den Service-Angeboten.

VWS und Teilmodelle

Die VWS einer Industrie 4.0-Komponente besteht aus einem oder mehreren Teilmodellen, die jeweils eine strukturierte Menge an Merkmalen enthalten. Sie werden von der Industrial Digital Twin Association (IDTA) festgelegt, einem Verein, in dem 113 Organisationen aus den Bereichen Forschung, Industrie und Software (u. a. CONTACT Software) an der Definition von VWS zusammenarbeiten. Eine Liste mit allen derzeit verfügbaren Teilmodellen finden Sie unter https://industrialdigitaltwin.org/content-hub/teilmodelle.

Die Teilmodelle der VWS kann GMN in CONTACT Elements for IoT mit wenig Aufwand selbst befüllen. Die Plattform beinhaltet ein Widget, das im Rahmen des Forschungsprojekts als Prototyp entwickelt wurde. Es zeigt Usern an, welche Teilmodelle derzeit beim Asset vorhanden und welche verfügbar, aber noch nicht angelegt sind. Über das Frontend können User direkt auf den REST-Knoten springen und Teilmodelle hoch- bzw. herunterladen (im VWS-/JSON-Format).

Bei der Umsetzung der datenbasierten Service-Angebote konzentriert sich GMN auf die Teilmodelle

  • Time Series Data (u. a. semantische Informationen über Zeitreihendaten)
  • Typenschild (u. a. Informationen zum Produkt, dem Namen des Herstellers sowie der Produktbezeichnung und -familie),
  • Kontaktinformationen (standardisierte Metadaten einer Maschine/Anlage) sowie
  • Carbon Footprint (Informationen zum Carbon Footprint einer Maschine/Anlage)

Die Befüllung der Teilmodelle ist simpel. Das zeigt sich im Kontext von GMN am Modul Time Series Data. Während der Referenzfahrt einer Motorspindel auf dem internen Prüfstand werden die Zeitreihendaten von CONTACT Elements for IoT aufgezeichnet und automatisch in das Teilmodell der VWS der gerade geprüften Motorspindel übertragen. Zugleich legt die Plattform ein Dokument zur Referenzfahrt an. Dadurch kann GMN deren Gültigkeit jederzeit tracken und für externe Stakeholder bereitstellen.

Neue Services nehmen Gestalt an

Der Einsatz von Verwaltungsschalen erlaubt es GMN, seine Service-Ideen zu realisieren. Das betrifft aktuell den Inbetriebnahme-Service und die automatisierten Services zur Qualitätssicherung.

Durch die Analyse der Spindeldaten kann das Unternehmen Ausreißer in den Einsatzdaten erkennen und darauf aufbauend Handlungsempfehlungen geben. Unterschiedliche Schwinggeschwindigkeiten deuten beispielsweise darauf hin, dass die Spindel in der Maschine falsch verbaut wurde oder zeitlich veränderliche Vorgänge stattfinden. Genauso lassen sich anhand der Analyse Aussagen über Anomalien im Betriebsverhalten treffen.

Die Transparenz, die auf diesem Weg entsteht, wird in CONTACT Elements for IoT mithilfe von Dashboards erhöht. GMN sieht darin alle relevanten Informationen zu den auf dem Prüfstand befindlichen Spindeln, von 3D-Modellen bis hin zu Zustandsdaten. Diese Übersicht ist nicht zuletzt für das Qualitätsmanagement von hohem Wert.

Die Verwaltungsschale einer Spindel in CONTACT Elements.

Zusammengefasst

Verwaltungsschalen sind anbieterunabhängige Standards, mit denen Unternehmen Digitale Zwillinge beschreiben. Sie zählen zu den wichtigsten Hebeln für die Umsetzung neuer Industrie-4.0-Geschäftsmodelle, denn sie ermöglichen die Kommunikation zwischen Assets, Systemen und Organisationen.

Wie der Einsatz von Verwaltungsschalen in der Praxis funktioniert, zeigt das Beispiel GMN. Die Firma konzipiert damit neue, produktbegleitende Dienstleistungen, die auf den Informationen der VWS ihrer Produkte basieren. Diese Angebote kann GMN durch die fortwährende Analyse von Einsatzdaten in CONTACT Elements for IoT sukzessive verbessern.